文件名称:DSP_Lab_070
-
所属分类:
- 标签属性:
- 上传时间:2012-11-16
-
文件大小:789byte
-
已下载:0次
-
提 供 者:
-
相关连接:无下载说明:别用迅雷下载,失败请重下,重下不扣分!
介绍说明--下载内容来自于网络,使用问题请自行百度
For a file(.wave)
• Find the sampling frequency and the number of bits per sample.
• Re-quantize the samples using the following methods:
o Linear Quantization
o A-Law Companding with A=87.6
o μ-Law Companding with μ=255
• Use a mid-rise quantizer with 4, 5, 6, 7, and 8 bits per sample.
• Obtain the signal-to-quantization noise ratio (SQNR) for each of the
above 15 cases.
• It is required to plot the SQNR (dB) versus the number of bits per
sample for linear quantization, A-law companding, and μ-law
companding. All 3 plots may be on the same figure, if convenient.
-For a file(.wave)
• Find the sampling frequency and the number of bits per sample.
• Re-quantize the samples using the following methods:
o Linear Quantization
o A-Law Companding with A=87.6
o μ-Law Companding with μ=255
• Use a mid-rise quantizer with 4, 5, 6, 7, and 8 bits per sample.
• Obtain the signal-to-quantization noise ratio (SQNR) for each of the
above 15 cases.
• It is required to plot the SQNR (dB) versus the number of bits per
sample for linear quantization, A-law companding, and μ-law
companding. All 3 plots may be on the same figure, if convenient.
• Find the sampling frequency and the number of bits per sample.
• Re-quantize the samples using the following methods:
o Linear Quantization
o A-Law Companding with A=87.6
o μ-Law Companding with μ=255
• Use a mid-rise quantizer with 4, 5, 6, 7, and 8 bits per sample.
• Obtain the signal-to-quantization noise ratio (SQNR) for each of the
above 15 cases.
• It is required to plot the SQNR (dB) versus the number of bits per
sample for linear quantization, A-law companding, and μ-law
companding. All 3 plots may be on the same figure, if convenient.
-For a file(.wave)
• Find the sampling frequency and the number of bits per sample.
• Re-quantize the samples using the following methods:
o Linear Quantization
o A-Law Companding with A=87.6
o μ-Law Companding with μ=255
• Use a mid-rise quantizer with 4, 5, 6, 7, and 8 bits per sample.
• Obtain the signal-to-quantization noise ratio (SQNR) for each of the
above 15 cases.
• It is required to plot the SQNR (dB) versus the number of bits per
sample for linear quantization, A-law companding, and μ-law
companding. All 3 plots may be on the same figure, if convenient.
(系统自动生成,下载前可以参看下载内容)
下载文件列表
DSP_Lab_070.m
本网站为编程资源及源代码搜集、介绍的搜索网站,版权归原作者所有! 粤ICP备11031372号
1999-2046 搜珍网 All Rights Reserved.