文件名称:Fergus-Perona
-
所属分类:
- 标签属性:
- 上传时间:2012-11-16
-
文件大小:3.25mb
-
已下载:0次
-
提 供 者:
-
相关连接:无下载说明:别用迅雷下载,失败请重下,重下不扣分!
介绍说明--下载内容来自于网络,使用问题请自行百度
We present a method to learn and recognize object class
models from unlabeled and unsegmented cluttered scenes
in a scale invariant manner. Objects are modeled as flexible
constellations of parts. A probabilistic representation is
used for all aspects of the object: shape, appearance, occlusion
and relative scale. An entropy-based feature detector
is used to select regions and their scale within the image. In
learning the parameters of the scale-invariant object model
are estimated. This is done using expectation-maximization
in a maximum-likelihood setting. In recognition, this model
is used in a Bayesian manner to classify images. The flexible
nature of the model is demonstrated by excellent results
over a range of datasets including geometrically constrained
classes (e.g. faces, cars) and flexible objects (such
as animals).
models from unlabeled and unsegmented cluttered scenes
in a scale invariant manner. Objects are modeled as flexible
constellations of parts. A probabilistic representation is
used for all aspects of the object: shape, appearance, occlusion
and relative scale. An entropy-based feature detector
is used to select regions and their scale within the image. In
learning the parameters of the scale-invariant object model
are estimated. This is done using expectation-maximization
in a maximum-likelihood setting. In recognition, this model
is used in a Bayesian manner to classify images. The flexible
nature of the model is demonstrated by excellent results
over a range of datasets including geometrically constrained
classes (e.g. faces, cars) and flexible objects (such
as animals).
(系统自动生成,下载前可以参看下载内容)
下载文件列表
Fergus-Perona.pdf
本网站为编程资源及源代码搜集、介绍的搜索网站,版权归原作者所有! 粤ICP备11031372号
1999-2046 搜珍网 All Rights Reserved.