文件名称:DataMining3rd
-
所属分类:
- 标签属性:
- 上传时间:2012-11-16
-
文件大小:5.11mb
-
已下载:0次
-
提 供 者:
-
相关连接:无下载说明:别用迅雷下载,失败请重下,重下不扣分!
介绍说明--下载内容来自于网络,使用问题请自行百度
评测数据在去掉停用词的
分类过程开放测试中,引入Good-Turing算法的分类性能比Laplace原则提高了3·05 ,比Lidstone方法提高
1·00 .而在交叉熵选择特征词的算法中,增加Good-Turing的贝叶斯分类方法可比最大熵分类性能高95 .通过这种数据平滑的算法,有助于克服因数据稀疏而引发的特征词缺失问题
-Evaluation data in the open test of the classification process to remove stop words, the introduction of the Good-Turing algorithm classification performance than the Laplace principle 305 , 100 Lidstone method to select feature words in the cross-entropy algorithm to increase the Good-Turing Bayesian classification than maximum entropy classification performance of 95 through this data smoothing algorithm, can help to overcome the problem of sparse data caused by the lack of feature words
分类过程开放测试中,引入Good-Turing算法的分类性能比Laplace原则提高了3·05 ,比Lidstone方法提高
1·00 .而在交叉熵选择特征词的算法中,增加Good-Turing的贝叶斯分类方法可比最大熵分类性能高95 .通过这种数据平滑的算法,有助于克服因数据稀疏而引发的特征词缺失问题
-Evaluation data in the open test of the classification process to remove stop words, the introduction of the Good-Turing algorithm classification performance than the Laplace principle 305 , 100 Lidstone method to select feature words in the cross-entropy algorithm to increase the Good-Turing Bayesian classification than maximum entropy classification performance of 95 through this data smoothing algorithm, can help to overcome the problem of sparse data caused by the lack of feature words
(系统自动生成,下载前可以参看下载内容)
下载文件列表
DataMining3rd.pdf
本网站为编程资源及源代码搜集、介绍的搜索网站,版权归原作者所有! 粤ICP备11031372号
1999-2046 搜珍网 All Rights Reserved.