文件名称:RSA
-
所属分类:
- 标签属性:
- 上传时间:2013-01-01
-
文件大小:1kb
-
已下载:1次
-
提 供 者:
-
相关连接:无下载说明:别用迅雷下载,失败请重下,重下不扣分!
介绍说明--下载内容来自于网络,使用问题请自行百度
RSA 数字签名的基本思想
RSA数字签名的安全性依赖于大数分解的困难性。
1、参数与密钥生成
首先选取两个大素数p和q,计算
n=pq
其欧拉函数值
(p-1)*(q-1)
然后选取随机整数e,满足
gcd(e,(p-1)*(q-1)))=1
并计算
d=e^-1 mod((p-1)*(q-1))
则公钥为(e,n),私钥为d;p,q是秘密参数,需要保密。如不需要
保存,计算出e,d后可销毁。
2、签名算法
设待签名消息为m,对消息m的签名为
S=Sigk(m)=m^d mod n
3、签名的验证算法
当签名接受者收到签名(s,m)时,检验m=s^e mod n是否成立,以确定签名是否有效。-The basic idea of the RSA digital signatures RSA digital signature security depends on the difficulty of factoring large integers. 1, the parameters and the key generated by first selecting two large primes p and q, the calculated N = PQ the Euler function values (p-1)* (q-1) and then select a random integer e, satisfy the GCD (e, (p-1)* (q-1))) = 1 and calculate d = e ^-1 Mod ((p-1)* (q-1)) the public key (e, N), the private key D p, q is the secret parameters, the need for confidentiality. If do not want to save, calculate e, d can be destroyed. 2, the signature algorithm provided to be signed message m, the signature of the message m S = Sigk (m) = m ^ d mod n 3, when the signature verification of the signature algorithm when receiving the signature (s, m), testing m = s ^ e mod n is set up to determine whether the signature is valid.
RSA数字签名的安全性依赖于大数分解的困难性。
1、参数与密钥生成
首先选取两个大素数p和q,计算
n=pq
其欧拉函数值
(p-1)*(q-1)
然后选取随机整数e,满足
gcd(e,(p-1)*(q-1)))=1
并计算
d=e^-1 mod((p-1)*(q-1))
则公钥为(e,n),私钥为d;p,q是秘密参数,需要保密。如不需要
保存,计算出e,d后可销毁。
2、签名算法
设待签名消息为m,对消息m的签名为
S=Sigk(m)=m^d mod n
3、签名的验证算法
当签名接受者收到签名(s,m)时,检验m=s^e mod n是否成立,以确定签名是否有效。-The basic idea of the RSA digital signatures RSA digital signature security depends on the difficulty of factoring large integers. 1, the parameters and the key generated by first selecting two large primes p and q, the calculated N = PQ the Euler function values (p-1)* (q-1) and then select a random integer e, satisfy the GCD (e, (p-1)* (q-1))) = 1 and calculate d = e ^-1 Mod ((p-1)* (q-1)) the public key (e, N), the private key D p, q is the secret parameters, the need for confidentiality. If do not want to save, calculate e, d can be destroyed. 2, the signature algorithm provided to be signed message m, the signature of the message m S = Sigk (m) = m ^ d mod n 3, when the signature verification of the signature algorithm when receiving the signature (s, m), testing m = s ^ e mod n is set up to determine whether the signature is valid.
(系统自动生成,下载前可以参看下载内容)
下载文件列表
RSA数字签名源程序/rsadss.cpp
RSA数字签名源程序/
RSA数字签名源程序/
本网站为编程资源及源代码搜集、介绍的搜索网站,版权归原作者所有! 粤ICP备11031372号
1999-2046 搜珍网 All Rights Reserved.