文件名称:numerical-methods
介绍说明--下载内容来自于网络,使用问题请自行百度
数值方法的5个重要的算法:
1.[Dirich.m] 求解拉普拉斯方程的狄利克雷方法. 用于偏微分方程的数值解
2.[Hamming.m] 汉明方法是用来修正微分方程的多步预测。
3. [Milne.m] 米尔恩 - 辛普森差分方程求解方法,用于预测校正方法。
4. [Rkf45.m]龙格 - 库塔 - 沃尔伯格错误控制和步骤的方法求解微分方程的近似解
5.[Romber.m]著名的龙贝格积分源代码。计算结果存在并显示为下三角矩阵。-Numerical Methods in five of the more important algorithms:
1. [Dirich.m] to solve the Laplace equation Dirichlet method for the numerical solution of partial differential equations
2.[Hamming.m] Hamming method is the multistep forecast corrected differential equations.
3. [Milne.m] the Milne- Simpson method as a differential equation solver used forecast correction method.
4. [Rkf45.m] Runge- Kutta- Wahlberg error control and step method for solving differential equations approximate solution
5. [Romber.m] the famous Romberg integral source code numerical integration, the presence of computable results show a lower triangular matrix.
1.[Dirich.m] 求解拉普拉斯方程的狄利克雷方法. 用于偏微分方程的数值解
2.[Hamming.m] 汉明方法是用来修正微分方程的多步预测。
3. [Milne.m] 米尔恩 - 辛普森差分方程求解方法,用于预测校正方法。
4. [Rkf45.m]龙格 - 库塔 - 沃尔伯格错误控制和步骤的方法求解微分方程的近似解
5.[Romber.m]著名的龙贝格积分源代码。计算结果存在并显示为下三角矩阵。-Numerical Methods in five of the more important algorithms:
1. [Dirich.m] to solve the Laplace equation Dirichlet method for the numerical solution of partial differential equations
2.[Hamming.m] Hamming method is the multistep forecast corrected differential equations.
3. [Milne.m] the Milne- Simpson method as a differential equation solver used forecast correction method.
4. [Rkf45.m] Runge- Kutta- Wahlberg error control and step method for solving differential equations approximate solution
5. [Romber.m] the famous Romberg integral source code numerical integration, the presence of computable results show a lower triangular matrix.
(系统自动生成,下载前可以参看下载内容)
下载文件列表
numerical methods/dirich.m
numerical methods/hamming.m
numerical methods/milne.m
numerical methods/rkf45.m
numerical methods/romber.m
numerical methods
numerical methods/hamming.m
numerical methods/milne.m
numerical methods/rkf45.m
numerical methods/romber.m
numerical methods
本网站为编程资源及源代码搜集、介绍的搜索网站,版权归原作者所有! 粤ICP备11031372号
1999-2046 搜珍网 All Rights Reserved.