文件名称:Gupta-and-Chen---2010---Theory
-
所属分类:
- 标签属性:
- 上传时间:2013-03-16
-
文件大小:871.62kb
-
已下载:0次
-
提 供 者:
-
相关连接:无下载说明:别用迅雷下载,失败请重下,重下不扣分!
介绍说明--下载内容来自于网络,使用问题请自行百度
This introduction to the expectation–maximization (EM) algorithm
provides an intuitive and mathematically rigorous understanding of
EM. Two of the most popular applications of EM are described in
detail: estimating Gaussian mixture models (GMMs), and estimat-
ing hidden Markov models (HMMs). EM solutions are also derived
for learning an optimal mixture of fi xed models, for estimating the
parameters of a compound Dirichlet distribution, and for dis-entangling
superimposed signals. Practical issues that arise in the use of EM are
discussed, as well as variants of the algorithm that help deal with these
challenges.,This introduction to the expectation–maximization (EM) algorithm
provides an intuitive and mathematically rigorous understanding of
EM. Two of the most popular applications of EM are described in
detail: estimating Gaussian mixture models (GMMs), and estimat-
ing hidden Markov models (HMMs). EM solutions are also derived
for learning an optimal mixture of fi xed models, for estimating the
parameters of a compound Dirichlet distribution, and for dis-entangling
superimposed signals. Practical issues that arise in the use of EM are
discussed, as well as variants of the algorithm that help deal with these
challenges.
provides an intuitive and mathematically rigorous understanding of
EM. Two of the most popular applications of EM are described in
detail: estimating Gaussian mixture models (GMMs), and estimat-
ing hidden Markov models (HMMs). EM solutions are also derived
for learning an optimal mixture of fi xed models, for estimating the
parameters of a compound Dirichlet distribution, and for dis-entangling
superimposed signals. Practical issues that arise in the use of EM are
discussed, as well as variants of the algorithm that help deal with these
challenges.,This introduction to the expectation–maximization (EM) algorithm
provides an intuitive and mathematically rigorous understanding of
EM. Two of the most popular applications of EM are described in
detail: estimating Gaussian mixture models (GMMs), and estimat-
ing hidden Markov models (HMMs). EM solutions are also derived
for learning an optimal mixture of fi xed models, for estimating the
parameters of a compound Dirichlet distribution, and for dis-entangling
superimposed signals. Practical issues that arise in the use of EM are
discussed, as well as variants of the algorithm that help deal with these
challenges.
(系统自动生成,下载前可以参看下载内容)
下载文件列表
Gupta and Chen - 2010 - Theory and Use of the EM Algorithm.pdf
本网站为编程资源及源代码搜集、介绍的搜索网站,版权归原作者所有! 粤ICP备11031372号
1999-2046 搜珍网 All Rights Reserved.