CDN加速镜像 | 设为首页 | 加入收藏夹
当前位置: 首页 资源下载 源码下载 数值算法/人工智能 人工智能/神经网络/遗传算法

文件名称:SceneTextCNN_demo.tar

  • 所属分类:
  • 标签属性:
  • 上传时间:
    2013-03-16
  • 文件大小:
    58.22mb
  • 已下载:
    3次
  • 提 供 者:
  • 相关连接:
  • 下载说明:
    别用迅雷下载,失败请重下,重下不扣分!

介绍说明--下载内容来自于网络,使用问题请自行百度

端至端卷积神经网络的文字识别,代码演示包.

它包含我们的论文中使用的所有主要组成部分: kmeans无监督特征学习 + 卷积神经网络(CNN)-This is a demo package of the code we used for our paper, "End-to-End

Text Recognition with Convolutional Neural Networks", T. Wang, D. Wu,

A. Coates, A. Ng, in ICPR 2012.



The package is provided to facilitate understanding of the algorithms

used in our paper. It contains demos to all the major components of our

end-to-end system. Because of speed considerations, the CNN

architectures as well as dataset sizes provided in this package are

much smaller than the actural ones used in the paper, although the

algorithms themselves are identical. We also provide our trained models

together with code to reproduce major results reported in our paper.
(系统自动生成,下载前可以参看下载内容)

下载文件列表

SceneTextCNN_demo/
SceneTextCNN_demo/models/
SceneTextCNN_demo/icdarTestLex/
SceneTextCNN_demo/finetune/
SceneTextCNN_demo/kmeans/
SceneTextCNN_demo/extract1stLayerFeatures/
SceneTextCNN_demo/trainDetector/
SceneTextCNN_demo/trainClassifier/
SceneTextCNN_demo/detectorDemo/
SceneTextCNN_demo/structs/
SceneTextCNN_demo/icdarTestLex/lex5/
SceneTextCNN_demo/icdarTestLex/lex20/
SceneTextCNN_demo/icdarTestLex/lex50/
SceneTextCNN_demo/finetune/models/
SceneTextCNN_demo/finetune/convCode/
SceneTextCNN_demo/finetune/poolFunc/
SceneTextCNN_demo/finetune/stackCode/
SceneTextCNN_demo/finetune/minFunc/
SceneTextCNN_demo/detectorDemo/models/
SceneTextCNN_demo/finetune/minFunc/logistic/
SceneTextCNN_demo/loadRecognitionModel.m
SceneTextCNN_demo/getRecogScores_convnet.m
SceneTextCNN_demo/beam_search_step.m
SceneTextCNN_demo/ascii2label.m
SceneTextCNN_demo/e2e_demo.m
SceneTextCNN_demo/license.txt
SceneTextCNN_demo/score2Word.m
SceneTextCNN_demo/score2WordBounds.m
SceneTextCNN_demo/parseXML.m
SceneTextCNN_demo/README
SceneTextCNN_demo/wtnms.m
SceneTextCNN_demo/filterScores.m
SceneTextCNN_demo/wordRecog.m
SceneTextCNN_demo/getIcdarTrainStruct.m
SceneTextCNN_demo/getIcdarTestStruct.m
SceneTextCNN_demo/getMatchScore.m
SceneTextCNN_demo/getSVTStruct.m
SceneTextCNN_demo/e2e_visualize.m
SceneTextCNN_demo/getFScore.m
SceneTextCNN_demo/models/best_classifier_convnet.mat
SceneTextCNN_demo/models/detector_cnn.mat
SceneTextCNN_demo/models/best_classifier_sig_mu.mat
SceneTextCNN_demo/models/best_centroids.mat
SceneTextCNN_demo/finetune/triangleRect.m
SceneTextCNN_demo/finetune/create_detector_data.m
SceneTextCNN_demo/finetune/bsxfunwrap.m
SceneTextCNN_demo/finetune/create_icdar_data.m
SceneTextCNN_demo/finetune/triangleRectGrad.m
SceneTextCNN_demo/finetune/tanhInitRand.m
SceneTextCNN_demo/finetune/l2svmLoss.m
SceneTextCNN_demo/finetune/convnet_wrapper_svm_fix1stlayer.m
SceneTextCNN_demo/finetune/svmConvLoss.m
SceneTextCNN_demo/finetune/svmConvPredict.m
SceneTextCNN_demo/finetune/svmConvSetup.m
SceneTextCNN_demo/kmeans/first_layer_centroids_detector_48.mat
SceneTextCNN_demo/kmeans/first_layer_centroids.mat
SceneTextCNN_demo/kmeans/display_network.m
SceneTextCNN_demo/kmeans/kmeansDemo.m
SceneTextCNN_demo/kmeans/selectCentroids.m
SceneTextCNN_demo/kmeans/normalizeAndZCA.m
SceneTextCNN_demo/kmeans/run_projection_kmeans.m
SceneTextCNN_demo/kmeans/filters1.jpg
SceneTextCNN_demo/extract1stLayerFeatures/prepData.m
SceneTextCNN_demo/extract1stLayerFeatures/triangleRect.m
SceneTextCNN_demo/extract1stLayerFeatures/extractFeatures.m
SceneTextCNN_demo/extract1stLayerFeatures/createFeatures.m
SceneTextCNN_demo/trainDetector/train_detector.m
SceneTextCNN_demo/trainClassifier/train_classifier.m
SceneTextCNN_demo/detectorDemo/loadDataPreprocess.m
SceneTextCNN_demo/detectorDemo/getImgNames.m
SceneTextCNN_demo/detectorDemo/firstLayerFeatures.m
SceneTextCNN_demo/detectorDemo/firstLayerFeaturesHelper.m
SceneTextCNN_demo/detectorDemo/trainDetectorCNN.m
SceneTextCNN_demo/detectorDemo/cstackToFilterStack.m
SceneTextCNN_demo/detectorDemo/runDetectorDemo.m
SceneTextCNN_demo/detectorDemo/visualizeBoxes.m
SceneTextCNN_demo/detectorDemo/runDetectorFull.m
SceneTextCNN_demo/detectorDemo/nmsLineResponse.m
SceneTextCNN_demo/detectorDemo/nmsBBoxes.m
SceneTextCNN_demo/detectorDemo/findLinesFull.m
SceneTextCNN_demo/detectorDemo/findBoxesFull.m
SceneTextCNN_demo/detectorDemo/fullImageForwardPropHelper.m
SceneTextCNN_demo/detectorDemo/fullImageForwardProp.m
SceneTextCNN_demo/detectorDemo/README
SceneTextCNN_demo/detectorDemo/computeResponses.m
SceneTextCNN_demo/structs/svtWordTestStruct.mat
SceneTextCNN_demo/icdarTestLex/lex5/I00127.jpg.txt
SceneTextCNN_demo/icdarTestLex/lex5/I00126.jpg.txt
SceneTextCNN_demo/icdarTestLex/lex5/I00125.jpg.txt
SceneTextCNN_demo/icdarTestLex/lex5/I00124.jpg.txt
SceneTextCNN_demo/icdarTestLex/lex5/I00123.jpg.txt
SceneTextCNN_demo/icdarTestLex/lex5/I00122.jpg.txt
SceneTextCNN_demo/icdarTestLex/lex5/I00121.jpg.txt
SceneTextCNN_demo/icdarTestLex/lex5/I00120.jpg.txt
SceneTextCNN_demo/icdarTestLex/lex5/I00119.jpg.txt
SceneTextCNN_demo/icdarTestLex/lex5/I00118.jpg.txt
SceneTextCNN_demo/icdarTestLex/lex5/I00117.jpg.txt
SceneTextCNN_demo/icdarTestLex/lex5/I00116.jpg.txt
SceneTextCNN_demo/icdarTestLex/lex5/I00115.jpg.txt
SceneTextCNN_demo/icdarTestLex/lex5/I00114.jpg.txt
SceneTextCNN_demo/icdarTestLex/lex5/I00113.jpg.txt
SceneTextCNN_demo/icdarTestLex/lex5/I00112.jpg.txt
SceneTextCNN_demo/icdarTestLex/lex5/I00111.jpg.txt
SceneTextCNN_demo/icdarTestLex/lex5/I00110.jpg.txt
SceneTextCNN_demo/icdarTestLex/lex5/I00109.jpg.txt
SceneTextCNN_demo/icdarTestLex/lex5/I00108.jpg.txt
SceneTextCNN_demo/icdarTestLex/lex5/I00107.jpg.txt
SceneTextCNN_demo/icdarTestLex/lex5/I00106.jpg.txt
SceneTextCNN_demo/icdarTestLex/lex5/I00105.jpg.txt
SceneTextCNN_demo/icdarTestLex/lex5/I00104.jpg.txt
SceneTextCNN_demo/icdarTestLex/lex5/I00103.jpg.txt
SceneTextCNN_demo/icdarTestLex/lex5/I00102.jpg.txt
SceneTextCNN_demo/icdarTestLex/lex5/I00101.jpg.txt
SceneTextCNN_demo/icdarTestLex/lex5/I00100.jpg.txt
SceneTextCNN_demo/icdarTestLex/lex5/I00099.jpg.txt
SceneTextCNN_demo/icdarTestLex/lex5/I00098.jpg.txt

相关说明

  • 本站资源为会员上传分享交流与学习,如有侵犯您的权益,请联系我们删除.
  • 搜珍网是交换下载平台,只提供交流渠道,下载内容来自于网络,除下载问题外,其它问题请自行百度。更多...
  • 本站已设置防盗链,请勿用迅雷、QQ旋风等下载软件下载资源,下载后用WinRAR最新版进行解压.
  • 如果您发现内容无法下载,请稍后再次尝试;或换浏览器;或者到消费记录里找到下载记录反馈给我们.
  • 下载后发现下载的内容跟说明不相乎,请到消费记录里找到下载记录反馈给我们,经确认后退回积分.
  • 如下载前有疑问,可以通过点击"提供者"的名字,查看对方的联系方式,联系对方咨询.

相关评论

暂无评论内容.

发表评论

*快速评论: 推荐 一般 有密码 和说明不符 不是源码或资料 文件不全 不能解压 纯粹是垃圾
*内  容:
*验 证 码:
搜珍网 www.dssz.com