文件名称:Image-reconstruction_CS
-
所属分类:
- 标签属性:
- 上传时间:2013-04-11
-
文件大小:399.48kb
-
已下载:0次
-
提 供 者:
-
相关连接:无下载说明:别用迅雷下载,失败请重下,重下不扣分!
介绍说明--下载内容来自于网络,使用问题请自行百度
合稀疏贝叶斯学习(SBL)和可压缩传感理论(CS),给出一种在噪声测量条件下重建可压缩图像的方法。该方法将cS理论中图像重建过程看作一个线性回归问题,而待重建的图像是该回归模型巾的未知权值参数;利用sBL方法对权值赋予确定的先验条件概率分布用以限制模型的复杂度,并引入超参数-
Hop sparse Bayesian learning ( SBL ) and compressible sensing theory ( CS ) , give a compressible image reconstruction in the noise measurement conditions . The method of the CS theory image reconstruction process as a linear regression problem , the image to be reconstructed is unknown weighting parameters of the regression model towel SBL method to determine the weights given a priori probability distribution to limit the complexity of the model and the introduction of the hyper-parameters
Hop sparse Bayesian learning ( SBL ) and compressible sensing theory ( CS ) , give a compressible image reconstruction in the noise measurement conditions . The method of the CS theory image reconstruction process as a linear regression problem , the image to be reconstructed is unknown weighting parameters of the regression model towel SBL method to determine the weights given a priori probability distribution to limit the complexity of the model and the introduction of the hyper-parameters
(系统自动生成,下载前可以参看下载内容)
下载文件列表
Image reconstruction method based on sparse Bayesian learning.pdf
本网站为编程资源及源代码搜集、介绍的搜索网站,版权归原作者所有! 粤ICP备11031372号
1999-2046 搜珍网 All Rights Reserved.