文件名称:ZCR
介绍说明--下载内容来自于网络,使用问题请自行百度
autocov computes the autocovariance between two column vectors X and Y with same length N using the Fast Fourier Transform algorithm from 0 to N-2.
The resulting autocovariance column vector acv is given by the formula:
acv(p,1) = 1/(N-p) * \sum_{i=1}^{N}(X_{i} - X_bar) * (Y_{i+p} - Y_bar)
where X_bar and Y_bar are the mean estimates:
X_bar = 1/N * \sum_{i=1}^{N} X_{i} Y_bar = 1/N * \sum_{i=1}^{N} Y_{i}
It satisfies the following identities:
1. variance consistency: if acv = autocov(X,X), then acv(1,1) = var(X)
2. covariance consistence: if acv = autocov(X,Y), then acv(1,1) = cov(X,Y)-autocov computes the autocovariance between two column vectors X and Y with same length N using the Fast Fourier Transform algorithm from 0 to N-2.
The resulting autocovariance column vector acv is given by the formula:
acv(p,1) = 1/(N-p) * \sum_{i=1}^{N}(X_{i} - X_bar) * (Y_{i+p} - Y_bar)
where X_bar and Y_bar are the mean estimates:
X_bar = 1/N * \sum_{i=1}^{N} X_{i} Y_bar = 1/N * \sum_{i=1}^{N} Y_{i}
It satisfies the following identities:
1. variance consistency: if acv = autocov(X,X), then acv(1,1) = var(X)
2. covariance consistence: if acv = autocov(X,Y), then acv(1,1) = cov(X,Y)
The resulting autocovariance column vector acv is given by the formula:
acv(p,1) = 1/(N-p) * \sum_{i=1}^{N}(X_{i} - X_bar) * (Y_{i+p} - Y_bar)
where X_bar and Y_bar are the mean estimates:
X_bar = 1/N * \sum_{i=1}^{N} X_{i} Y_bar = 1/N * \sum_{i=1}^{N} Y_{i}
It satisfies the following identities:
1. variance consistency: if acv = autocov(X,X), then acv(1,1) = var(X)
2. covariance consistence: if acv = autocov(X,Y), then acv(1,1) = cov(X,Y)-autocov computes the autocovariance between two column vectors X and Y with same length N using the Fast Fourier Transform algorithm from 0 to N-2.
The resulting autocovariance column vector acv is given by the formula:
acv(p,1) = 1/(N-p) * \sum_{i=1}^{N}(X_{i} - X_bar) * (Y_{i+p} - Y_bar)
where X_bar and Y_bar are the mean estimates:
X_bar = 1/N * \sum_{i=1}^{N} X_{i} Y_bar = 1/N * \sum_{i=1}^{N} Y_{i}
It satisfies the following identities:
1. variance consistency: if acv = autocov(X,X), then acv(1,1) = var(X)
2. covariance consistence: if acv = autocov(X,Y), then acv(1,1) = cov(X,Y)
(系统自动生成,下载前可以参看下载内容)
下载文件列表
ZCR.m
license.txt
license.txt
本网站为编程资源及源代码搜集、介绍的搜索网站,版权归原作者所有! 粤ICP备11031372号
1999-2046 搜珍网 All Rights Reserved.