文件名称:61
-
所属分类:
- 标签属性:
- 上传时间:2013-06-02
-
文件大小:306.69kb
-
已下载:0次
-
提 供 者:
-
相关连接:无下载说明:别用迅雷下载,失败请重下,重下不扣分!
介绍说明--下载内容来自于网络,使用问题请自行百度
提出了一种结合SVD的小波变换方法,对其在外弹道测量数据中的野值剔除进行了研究。对观测数据进行小波分解,将小波分解后的近似分量和细节分量组合实现相空间重构,作为SVD方法的输入观测矩阵,根据奇异
熵增量准则,对奇异值进行筛选,根据SVD逆变换重构原信号。这一方法克服了Hankel矩阵相空间构建方法数据
端点失真问题。以小波分解后分量重构的相空间可以满足正交性,进一步提高了SVD进行数据降噪和野值检测的精度。仿真数据和试验数据处理结果证明了这一方法的有效性。-Proposed a method of combining the SVD wavelet transform its outer ballistic measurement data in excluding outliers were studied. Observational data on wavelet decomposition, wavelet decomposition of the approximate combined component and detail component to achieve the phase space reconstruction, as the input observation matrix SVD method, based on singular entropy increment standards, singular value filter, according to the inverse transform heavy SVD structure of the original signal. This approach overcomes the Hankel matrix phase space construction method data endpoint distortion. Wavelet decomposition component of reconstruction phase space satisfy orthogonality, to further improve the SVD for data noise reduction and outlier detection accuracy. Simulation data and experimental data processing results prove the effectiveness of this approach.
熵增量准则,对奇异值进行筛选,根据SVD逆变换重构原信号。这一方法克服了Hankel矩阵相空间构建方法数据
端点失真问题。以小波分解后分量重构的相空间可以满足正交性,进一步提高了SVD进行数据降噪和野值检测的精度。仿真数据和试验数据处理结果证明了这一方法的有效性。-Proposed a method of combining the SVD wavelet transform its outer ballistic measurement data in excluding outliers were studied. Observational data on wavelet decomposition, wavelet decomposition of the approximate combined component and detail component to achieve the phase space reconstruction, as the input observation matrix SVD method, based on singular entropy increment standards, singular value filter, according to the inverse transform heavy SVD structure of the original signal. This approach overcomes the Hankel matrix phase space construction method data endpoint distortion. Wavelet decomposition component of reconstruction phase space satisfy orthogonality, to further improve the SVD for data noise reduction and outlier detection accuracy. Simulation data and experimental data processing results prove the effectiveness of this approach.
(系统自动生成,下载前可以参看下载内容)
下载文件列表
61.pdf
本网站为编程资源及源代码搜集、介绍的搜索网站,版权归原作者所有! 粤ICP备11031372号
1999-2046 搜珍网 All Rights Reserved.