文件名称:FAST-ICA11
-
所属分类:
- 标签属性:
- 上传时间:2013-06-27
-
文件大小:1.14kb
-
已下载:0次
-
提 供 者:
-
相关连接:无下载说明:别用迅雷下载,失败请重下,重下不扣分!
介绍说明--下载内容来自于网络,使用问题请自行百度
1、对观测数据进行中心化,;
2、使它的均值为0,对数据进行白化—>Z;
3、选择需要估计的分量的个数m,设置迭代次数p<-1
4、选择一个初始权矢量(随机的W,使其维数为Z的行向量个数);
5、利用迭代W(i,p)=mean(z(i,:).*(tanh((temp) *z)))-(mean(1-(tanh((temp)) *z).^2)).*temp(i,1)来学习W (这个公式是用来逼近负熵的)
6、用对称正交法处理下W
7、归一化W(:,p)=W(:,p)/norm(W(:,p))
8、若W不收敛,返回第5步
9、令p=p+1,若p小于等于m,返回第4步
剩下的应该都能看懂了
基本就是基于负熵最大的快速独立分量分析算法-1, on the center of the observation data, 2, making a mean of 0, the data to whitening-> Z 3, select the number of components to be estimated m, setting the number of iterations p < -1 4, select an initial weight vector (random W, so that the Z dimension of the row vectors of numbers) 5, the use of iteration W (i, p) = mean (z (i, :).* (tanh ((temp) ' * z)))- (mean (1- (tanh ((temp)) ' * z). ^ 2)).* temp (i, 1) to learn W (This formula is used to approximate the negative entropy) 6 with symmetric orthogonal treatments W 7, normalized W (:, p) = W (:, p)/norm (W (:, p)) 8, if W does not converge, return to step 5 9 , so that p = p+1, if p less than or equal m, return to step 4 should be able to read the rest of the basic is based on negative entropy of the largest fast independent component analysis algorithm
2、使它的均值为0,对数据进行白化—>Z;
3、选择需要估计的分量的个数m,设置迭代次数p<-1
4、选择一个初始权矢量(随机的W,使其维数为Z的行向量个数);
5、利用迭代W(i,p)=mean(z(i,:).*(tanh((temp) *z)))-(mean(1-(tanh((temp)) *z).^2)).*temp(i,1)来学习W (这个公式是用来逼近负熵的)
6、用对称正交法处理下W
7、归一化W(:,p)=W(:,p)/norm(W(:,p))
8、若W不收敛,返回第5步
9、令p=p+1,若p小于等于m,返回第4步
剩下的应该都能看懂了
基本就是基于负熵最大的快速独立分量分析算法-1, on the center of the observation data, 2, making a mean of 0, the data to whitening-> Z 3, select the number of components to be estimated m, setting the number of iterations p < -1 4, select an initial weight vector (random W, so that the Z dimension of the row vectors of numbers) 5, the use of iteration W (i, p) = mean (z (i, :).* (tanh ((temp) ' * z)))- (mean (1- (tanh ((temp)) ' * z). ^ 2)).* temp (i, 1) to learn W (This formula is used to approximate the negative entropy) 6 with symmetric orthogonal treatments W 7, normalized W (:, p) = W (:, p)/norm (W (:, p)) 8, if W does not converge, return to step 5 9 , so that p = p+1, if p less than or equal m, return to step 4 should be able to read the rest of the basic is based on negative entropy of the largest fast independent component analysis algorithm
(系统自动生成,下载前可以参看下载内容)
下载文件列表
FAST-ICA算法1.txt
本网站为编程资源及源代码搜集、介绍的搜索网站,版权归原作者所有! 粤ICP备11031372号
1999-2046 搜珍网 All Rights Reserved.