文件名称:fxxkzxtdzcxljbsjmyj
-
所属分类:
- 标签属性:
- 上传时间:2013-07-08
-
文件大小:381.46kb
-
已下载:0次
-
提 供 者:
-
相关连接:无下载说明:别用迅雷下载,失败请重下,重下不扣分!
介绍说明--下载内容来自于网络,使用问题请自行百度
非线性控制系统的支持向量机辨识建模研究
针对非线性控制系统辨识建模难的问题, 系统研究了基于支持向量机的非线性控制系统的辨识建模理论和方法,
然后利用回归型支持向量机( Support Vector Regression, SVR) 设计了一个非线性控制系统的辨识建模系统 仿真试验结果表明, SVR 具有很高的建模精度和较强的泛化能力, 从而验证了该辨识方法的有效性和先进性。-Nonlinear Control Systems Support Vector Machine Identification Modeling modeling for nonlinear control system identification difficult problem, the system studied based on support vector machine identification modeling nonlinear control systems theory and method, and then use the support vector regression machines (Support Vector Regression, SVR) designed a nonlinear control system identification modeling system simulation results showed that, SVR modeling with high accuracy and generalization ability, in order to verify the validity of the identification method and advanced.
针对非线性控制系统辨识建模难的问题, 系统研究了基于支持向量机的非线性控制系统的辨识建模理论和方法,
然后利用回归型支持向量机( Support Vector Regression, SVR) 设计了一个非线性控制系统的辨识建模系统 仿真试验结果表明, SVR 具有很高的建模精度和较强的泛化能力, 从而验证了该辨识方法的有效性和先进性。-Nonlinear Control Systems Support Vector Machine Identification Modeling modeling for nonlinear control system identification difficult problem, the system studied based on support vector machine identification modeling nonlinear control systems theory and method, and then use the support vector regression machines (Support Vector Regression, SVR) designed a nonlinear control system identification modeling system simulation results showed that, SVR modeling with high accuracy and generalization ability, in order to verify the validity of the identification method and advanced.
(系统自动生成,下载前可以参看下载内容)
下载文件列表
非线性控制系统的支持向量机辨识建模研究.pdf
本网站为编程资源及源代码搜集、介绍的搜索网站,版权归原作者所有! 粤ICP备11031372号
1999-2046 搜珍网 All Rights Reserved.