CDN加速镜像 | 设为首页 | 加入收藏夹
当前位置: 首页 资源下载 源码下载 数值算法/人工智能 数学计算/工程计算

文件名称:FRACTIONAL_DIFFERINTEGRAL

  • 所属分类:
  • 标签属性:
  • 上传时间:
    2014-04-03
  • 文件大小:
    235.26kb
  • 已下载:
    0次
  • 提 供 者:
  • 相关连接:
  • 下载说明:
    别用迅雷下载,失败请重下,重下不扣分!

介绍说明--下载内容来自于网络,使用问题请自行百度

通过傅里叶扩展计算的微分和积分函数,十分有用。-Descr iption  

 The n-th order derivative or integral of a function defined in a given

 range [a,b] is calculated through Fourier series expansion, where n is

 any real number and not necessarily integer. The necessary integrations

 are performed with the Gauss-Legendre quadrature rule. Selection for the

 number of desired Fourier coefficient pairs is made as well as for the

 number of the Gauss-Legendre integration points.

 Unlike many publicly available functions, the Gauss integration points k

 can be calculated for k>=46. The algorithm does not rely on the build-in

 Matlab routine roots to determine the roots of the Legendre polynomial,

 but finds the roots by looking for the eigenvalues of an alternative

 version of the companion matrix of the k th degree Legendre polynomial.

 The companion matrix is constructed as a symmetrical matrix, guaranteeing

 that all the eigenvalues (roots) will be real. On the contrary, the

  roots function us
(系统自动生成,下载前可以参看下载内容)

下载文件列表

FRACTIONAL_DIFFERINTEGRAL/cubic_polynomial_differintegral.m
FRACTIONAL_DIFFERINTEGRAL/fourier.m
FRACTIONAL_DIFFERINTEGRAL/fourier_diffint.m
FRACTIONAL_DIFFERINTEGRAL/html/cubic_polynomial_differintegral.html
FRACTIONAL_DIFFERINTEGRAL/html/cubic_polynomial_differintegral.png
FRACTIONAL_DIFFERINTEGRAL/html/cubic_polynomial_differintegral_01.png
FRACTIONAL_DIFFERINTEGRAL/html/cubic_polynomial_differintegral_02.png
FRACTIONAL_DIFFERINTEGRAL/html/cubic_polynomial_differintegral_03.png
FRACTIONAL_DIFFERINTEGRAL/html/cubic_polynomial_differintegral_eq33319.png
FRACTIONAL_DIFFERINTEGRAL/html/cubic_polynomial_differintegral_eq43362.png
FRACTIONAL_DIFFERINTEGRAL/html/cubic_polynomial_differintegral_eq45880.png
FRACTIONAL_DIFFERINTEGRAL/html/cubic_polynomial_differintegral_eq47863.png
FRACTIONAL_DIFFERINTEGRAL/html/cubic_polynomial_differintegral_eq62195.png
FRACTIONAL_DIFFERINTEGRAL/html/cubic_polynomial_differintegral_eq66619.png
FRACTIONAL_DIFFERINTEGRAL/html/cubic_polynomial_differintegral_eq71312.png
FRACTIONAL_DIFFERINTEGRAL/html/cubic_polynomial_differintegral_eq76742.png
FRACTIONAL_DIFFERINTEGRAL/html/cubic_polynomial_differintegral_eq83100.png
FRACTIONAL_DIFFERINTEGRAL/html/cubic_polynomial_differintegral_eq85163.png
FRACTIONAL_DIFFERINTEGRAL/html/cubic_polynomial_differintegral_eq86385.png
FRACTIONAL_DIFFERINTEGRAL/html/cubic_polynomial_differintegral_eq90533.png
FRACTIONAL_DIFFERINTEGRAL/html/cubic_polynomial_differintegral_eq91427.png
FRACTIONAL_DIFFERINTEGRAL/html/cubic_polynomial_differintegral_eq92095.png
FRACTIONAL_DIFFERINTEGRAL/html/cubic_polynomial_differintegral_eq95823.png
FRACTIONAL_DIFFERINTEGRAL/html/cubic_polynomial_differintegral_eq99834.png
FRACTIONAL_DIFFERINTEGRAL/html/identity_function_differintegral.html
FRACTIONAL_DIFFERINTEGRAL/html/identity_function_differintegral.png
FRACTIONAL_DIFFERINTEGRAL/html/identity_function_differintegral_01.png
FRACTIONAL_DIFFERINTEGRAL/html/identity_function_differintegral_02.png
FRACTIONAL_DIFFERINTEGRAL/html/identity_function_differintegral_eq33319.png
FRACTIONAL_DIFFERINTEGRAL/html/identity_function_differintegral_eq43362.png
FRACTIONAL_DIFFERINTEGRAL/html/identity_function_differintegral_eq45880.png
FRACTIONAL_DIFFERINTEGRAL/html/identity_function_differintegral_eq47863.png
FRACTIONAL_DIFFERINTEGRAL/html/identity_function_differintegral_eq62195.png
FRACTIONAL_DIFFERINTEGRAL/html/identity_function_differintegral_eq66619.png
FRACTIONAL_DIFFERINTEGRAL/html/identity_function_differintegral_eq71312.png
FRACTIONAL_DIFFERINTEGRAL/html/identity_function_differintegral_eq76742.png
FRACTIONAL_DIFFERINTEGRAL/html/identity_function_differintegral_eq83100.png
FRACTIONAL_DIFFERINTEGRAL/html/identity_function_differintegral_eq85163.png
FRACTIONAL_DIFFERINTEGRAL/html/identity_function_differintegral_eq86385.png
FRACTIONAL_DIFFERINTEGRAL/html/identity_function_differintegral_eq90533.png
FRACTIONAL_DIFFERINTEGRAL/html/identity_function_differintegral_eq91427.png
FRACTIONAL_DIFFERINTEGRAL/html/identity_function_differintegral_eq92095.png
FRACTIONAL_DIFFERINTEGRAL/html/identity_function_differintegral_eq95823.png
FRACTIONAL_DIFFERINTEGRAL/html/identity_function_differintegral_eq99834.png
FRACTIONAL_DIFFERINTEGRAL/html/tabular_function_differintegral.html
FRACTIONAL_DIFFERINTEGRAL/html/tabular_function_differintegral.png
FRACTIONAL_DIFFERINTEGRAL/html/tabular_function_differintegral_01.png
FRACTIONAL_DIFFERINTEGRAL/html/tabular_function_differintegral_02.png
FRACTIONAL_DIFFERINTEGRAL/html/tabular_function_differintegral_03.png
FRACTIONAL_DIFFERINTEGRAL/html/tabular_function_differintegral_eq33319.png
FRACTIONAL_DIFFERINTEGRAL/html/tabular_function_differintegral_eq43362.png
FRACTIONAL_DIFFERINTEGRAL/html/tabular_function_differintegral_eq45880.png
FRACTIONAL_DIFFERINTEGRAL/html/tabular_function_differintegral_eq47863.png
FRACTIONAL_DIFFERINTEGRAL/html/tabular_function_differintegral_eq62195.png
FRACTIONAL_DIFFERINTEGRAL/html/tabular_function_differintegral_eq66619.png
FRACTIONAL_DIFFERINTEGRAL/html/tabular_function_differintegral_eq71312.png
FRACTIONAL_DIFFERINTEGRAL/html/tabular_function_differintegral_eq76742.png
FRACTIONAL_DIFFERINTEGRAL/html/tabular_function_differintegral_eq83100.png
FRACTIONAL_DIFFERINTEGRAL/html/tabular_function_differintegral_eq85163.png
FRACTIONAL_DIFFERINTEGRAL/html/tabular_function_differintegral_eq86385.png
FRACTIONAL_DIFFERINTEGRAL/html/tabular_function_differintegral_eq90533.png
FRACTIONAL_DIFFERINTEGRAL/html/tabular_function_differintegral_eq91427.png
FRACTIONAL_DIFFERINTEGRAL/html/tabular_function_differintegral_eq92095.png
FRACTIONAL_DIFFERINTEGRAL/html/tabular_function_differintegral_eq95823.png
FRACTIONAL_DIFFERINTEGRAL/html/tabular_function_differintegral_eq99834.png
FRACTIONAL_DIFFERINTEGRAL/identity_function_differintegral.m
FRACTIONAL_DIFFERINTEGRAL/tabular_function_differintegral.m
license.txt

相关说明

  • 本站资源为会员上传分享交流与学习,如有侵犯您的权益,请联系我们删除.
  • 搜珍网是交换下载平台,只提供交流渠道,下载内容来自于网络,除下载问题外,其它问题请自行百度。更多...
  • 本站已设置防盗链,请勿用迅雷、QQ旋风等下载软件下载资源,下载后用WinRAR最新版进行解压.
  • 如果您发现内容无法下载,请稍后再次尝试;或换浏览器;或者到消费记录里找到下载记录反馈给我们.
  • 下载后发现下载的内容跟说明不相乎,请到消费记录里找到下载记录反馈给我们,经确认后退回积分.
  • 如下载前有疑问,可以通过点击"提供者"的名字,查看对方的联系方式,联系对方咨询.

相关评论

暂无评论内容.

发表评论

*快速评论: 推荐 一般 有密码 和说明不符 不是源码或资料 文件不全 不能解压 纯粹是垃圾
*内  容:
*验 证 码:
搜珍网 www.dssz.com