文件名称:ZTSBSVM
-
所属分类:
- 标签属性:
- 上传时间:2014-05-05
-
文件大小:5.63kb
-
已下载:0次
-
提 供 者:
-
相关连接:无下载说明:别用迅雷下载,失败请重下,重下不扣分!
介绍说明--下载内容来自于网络,使用问题请自行百度
算法提出了
一个新的部位观测模型和一种新的减小部位状态空间的方法:(1)对人体不同部位采用不同尺寸的细胞单元计算HOG特
征,并利用线性SVM进行分类,从而提出一种新的部位观测模型;(2)利用人体部位定位的先验分布确定部位定位区域,然
后通过邻域归并和设置与部位模板的匹配度阈值进一步减小状态空间,从而提出了一种减小部位状态空间的方法。仿真
实验结果表明所提算法与传统算法相比更加有效。-Algorithm proposed site of a new observation model and a new state-space methods to reduce parts: (1) to different parts of the body cells of different size unit calculates HOG features and linear SVM classification, which proposes a The new site observation model (2) the use of body parts to determine the positioning of the prior distribution site positioning region and then further reduce the state space by matching threshold neighborhood merging parts of the template and settings, thereby reducing the site presents a The method of the state space. Simulation results show that the algorithm is more efficient compared with the conventional algorithms.
一个新的部位观测模型和一种新的减小部位状态空间的方法:(1)对人体不同部位采用不同尺寸的细胞单元计算HOG特
征,并利用线性SVM进行分类,从而提出一种新的部位观测模型;(2)利用人体部位定位的先验分布确定部位定位区域,然
后通过邻域归并和设置与部位模板的匹配度阈值进一步减小状态空间,从而提出了一种减小部位状态空间的方法。仿真
实验结果表明所提算法与传统算法相比更加有效。-Algorithm proposed site of a new observation model and a new state-space methods to reduce parts: (1) to different parts of the body cells of different size unit calculates HOG features and linear SVM classification, which proposes a The new site observation model (2) the use of body parts to determine the positioning of the prior distribution site positioning region and then further reduce the state space by matching threshold neighborhood merging parts of the template and settings, thereby reducing the site presents a The method of the state space. Simulation results show that the algorithm is more efficient compared with the conventional algorithms.
(系统自动生成,下载前可以参看下载内容)
下载文件列表
新建文件夹/CreateSvm.m
新建文件夹/allFeature.m
新建文件夹/content.m
新建文件夹/
新建文件夹/allFeature.m
新建文件夹/content.m
新建文件夹/
本网站为编程资源及源代码搜集、介绍的搜索网站,版权归原作者所有! 粤ICP备11031372号
1999-2046 搜珍网 All Rights Reserved.