文件名称:SVM
介绍说明--下载内容来自于网络,使用问题请自行百度
SVM: 一种分类器,采用最大化分类间隔进行优化参数。
关于这个分类器两点比较重要:
1)SMO优化算法需要掌握, 可以具体参看两篇文章,John Platt的文章
以及“Improvements to Platt s SMO algorithm for SVM Classifier Design”
2)核函数的使用,如何将核函数使用到SVM中,核函数就是空间转换的函数,
说白了就是距离计算函数,如何将同类之间的距离计算的比较近,如何将低维空间转换到易于分类的高维空间。
我自己看书写的程序,采用Python实现,注释比较多-SVM: a classification, a classification intervals to maximize the use of optimization parameters.
About this classifier is more important points:
1) SMO optimization algorithms need to know, you can see the specific two articles, John Platt article
And "Improvements to Platt s SMO algorithm for SVM Classifier Design"
2) the use of nuclear function, how to use the SVM kernel function, the kernel function is a function space conversion,
That white is the distance calculation function, how relatively close distance between similar calculations, how to convert low-dimensional space to a high-dimensional space is easy classification.
I see myself writing program, using Python, notes more
关于这个分类器两点比较重要:
1)SMO优化算法需要掌握, 可以具体参看两篇文章,John Platt的文章
以及“Improvements to Platt s SMO algorithm for SVM Classifier Design”
2)核函数的使用,如何将核函数使用到SVM中,核函数就是空间转换的函数,
说白了就是距离计算函数,如何将同类之间的距离计算的比较近,如何将低维空间转换到易于分类的高维空间。
我自己看书写的程序,采用Python实现,注释比较多-SVM: a classification, a classification intervals to maximize the use of optimization parameters.
About this classifier is more important points:
1) SMO optimization algorithms need to know, you can see the specific two articles, John Platt article
And "Improvements to Platt s SMO algorithm for SVM Classifier Design"
2) the use of nuclear function, how to use the SVM kernel function, the kernel function is a function space conversion,
That white is the distance calculation function, how relatively close distance between similar calculations, how to convert low-dimensional space to a high-dimensional space is easy classification.
I see myself writing program, using Python, notes more
(系统自动生成,下载前可以参看下载内容)
下载文件列表
SVM.py
SVM.readme
SVM.readme
本网站为编程资源及源代码搜集、介绍的搜索网站,版权归原作者所有! 粤ICP备11031372号
1999-2046 搜珍网 All Rights Reserved.