文件名称:B.Lucas
-
所属分类:
- 标签属性:
- 上传时间:2014-10-08
-
文件大小:770.92kb
-
已下载:0次
-
提 供 者:
-
相关连接:无下载说明:别用迅雷下载,失败请重下,重下不扣分!
介绍说明--下载内容来自于网络,使用问题请自行百度
这是KLT算法论文的高清版。Kanade-Lucas-Tomasi方法,在跟踪方面表现的也不错,尤其在实时计算速度上,用它来得到的,是很多点的轨迹“trajectory”,并且还有一些发生了漂移的点,所以,得到跟踪点之后要进行一些后期的处理,说到Kanade-Lucas-Tomasi方法,首先要追溯到Kanade-Lucas两人在上世纪80年代发表的paper:An Iterative Image Registration Technique with an Application to Stereo Vision,这里讲的是一种图像点定位的方法,即图像的局部匹配,将图像匹配问题,从传统的滑动窗口搜索方法变为一个求解偏移量d的过程,后来Jianbo Shi和Carlo Tomasi两人发表了一篇CVPR(94 )的文章Good Features To Track,这篇文章,主要就是讲,在求解d的过程中,哪些情况下可以保证一定能够得到d的解,这些情况的点有什么特点(后来会发现,很多时候都是寻找的角点)。-KLT is an implementation, in the C programming language, of a feature tracker for the computer vision community. The source code is in the public domain, available for both commercial and non-commerical use.
The tracker is based on the early work of Lucas and Kanade [1], was developed fully by Tomasi and Kanade [2], and was explained clearly in the paper by Shi and Tomasi [3]. Later, Tomasi proposed a slight modification which makes the computation symmetric with respect to the two images-- the resulting equation is derived in the unpublished note by myself [4]. Briefly, good features are located by examining the minimum eigenvalue of each 2 by 2 gradient matrix, and features are tracked using a Newton-Raphson method of minimizing the difference between the two windows. Multiresolution tracking allows for relatively large displacements between images. The affine computation that evaluates the consistency of features between non-consecutive frames [3] was implemented by Thorsten T
The tracker is based on the early work of Lucas and Kanade [1], was developed fully by Tomasi and Kanade [2], and was explained clearly in the paper by Shi and Tomasi [3]. Later, Tomasi proposed a slight modification which makes the computation symmetric with respect to the two images-- the resulting equation is derived in the unpublished note by myself [4]. Briefly, good features are located by examining the minimum eigenvalue of each 2 by 2 gradient matrix, and features are tracked using a Newton-Raphson method of minimizing the difference between the two windows. Multiresolution tracking allows for relatively large displacements between images. The affine computation that evaluates the consistency of features between non-consecutive frames [3] was implemented by Thorsten T
(系统自动生成,下载前可以参看下载内容)
下载文件列表
B.Lucas.pdf
本网站为编程资源及源代码搜集、介绍的搜索网站,版权归原作者所有! 粤ICP备11031372号
1999-2046 搜珍网 All Rights Reserved.