文件名称:Hord
介绍说明--下载内容来自于网络,使用问题请自行百度
If an interpolating curve follows very closely to the data polygon, the length of the curve segment between two adjacent data points would be very close to the length of the chord of these two data points, and the length of the interpolating curve would also be very close to the total length of the data polygon. In the figure below, each curve segment of an interpolating polynomial is very close to the length of its supporting chord, and the length of the curve is close to the length of the data polygon. Therefore, if the domain is subdivided according to the distribution of the chord lengths, the parameters will be an approximation of the arc-length parameterization. This is the merit of the chord length or chordal method.-If an interpolating curve follows very closely to the data polygon, the length of the curve segment between two adjacent data points would be very close to the length of the chord of these two data points, and the the length of the interpolating curve would also be very close to the total length of the data polygon. In the figure below, each curve segment of an interpolating polynomial is very close to the length of its supporting chord, and the length of the curve is close to the length of the data polygon. Therefore, if the domain is subdivided according to the distribution of the chord lengths, the parameters will be an approximation of the arc-length parameterization. This is the merit of the chord length or chordal method.
(系统自动生成,下载前可以参看下载内容)
下载文件列表
Кропивницкая/Hord.asv
Кропивницкая/Hord.m
Кропивницкая/Kasat.m
Кропивницкая/Kombo.m
Кропивницкая/Комбинированный метод.mcd
Кропивницкая/Комбинированный метод.xmcd
Кропивницкая/Метод касательных.mcd
Кропивницкая/Метод касательных.xmcd
Кропивницкая/Метод хорд.mcd
Кропивницкая/Метод хорд.xmcd
Кропивницкая
Кропивницкая/Hord.m
Кропивницкая/Kasat.m
Кропивницкая/Kombo.m
Кропивницкая/Комбинированный метод.mcd
Кропивницкая/Комбинированный метод.xmcd
Кропивницкая/Метод касательных.mcd
Кропивницкая/Метод касательных.xmcd
Кропивницкая/Метод хорд.mcd
Кропивницкая/Метод хорд.xmcd
Кропивницкая
本网站为编程资源及源代码搜集、介绍的搜索网站,版权归原作者所有! 粤ICP备11031372号
1999-2046 搜珍网 All Rights Reserved.