CDN加速镜像 | 设为首页 | 加入收藏夹
当前位置: 首页 资源下载 文档资料 软件工程

文件名称:HMMallTOOL

  • 所属分类:
  • 标签属性:
  • 上传时间:
    2015-07-29
  • 文件大小:
    745.53kb
  • 已下载:
    0次
  • 提 供 者:
  • 相关连接:
  • 下载说明:
    别用迅雷下载,失败请重下,重下不扣分!

介绍说明--下载内容来自于网络,使用问题请自行百度

马尔科夫工具箱是一种统计模型,广泛应用在语音识别,词性自动标注,音字转换,概率文法等各个自然语言处理等应用领域。经过长期发展,尤其是在语音识别中的成功应用,使它成为一种通用的统计工具。-Markov models (Markov Model) is a statistical model, widely used in speech recognition, speech automatic annotation, audio and character conversion, the probability of grammar and other natural language processing and other applications. After long-term development, especially in the successful application of speech recognition, making it a common statistical tool.
(系统自动生成,下载前可以参看下载内容)

下载文件列表

HMMall/HMM/dhmm_em.m
HMMall/HMM/dhmm_em_online.m
HMMall/HMM/dhmm_logprob.m
HMMall/HMM/dhmm_logprob_brute_force.m
HMMall/HMM/dhmm_logprob_path.m
HMMall/HMM/dhmm_sample.m
HMMall/HMM/dhmm_sample_endstate.m
HMMall/HMM/fixed_lag_smoother.m
HMMall/HMM/fwdback.m
HMMall/HMM/fwdback_xi.m
HMMall/HMM/fwdprop_backsample.m
HMMall/HMM/gausshmm_train_observed.m
HMMall/HMM/mc_sample.m
HMMall/HMM/mc_sample_endstate.m
HMMall/HMM/mdp_sample.m
HMMall/HMM/mhmmParzen_train_observed.m
HMMall/HMM/mhmm_em.m
HMMall/HMM/mhmm_logprob.m
HMMall/HMM/mhmm_sample.m
HMMall/HMM/mk_leftright_transmat.m
HMMall/HMM/mk_rightleft_transmat.m
HMMall/HMM/multinomial_prob.m
HMMall/HMM/pomdp_sample.m
HMMall/HMM/transmat_train_observed.m
HMMall/HMM/viterbi_path.m
HMMall/HMM/例子/dhmm_em_demo.m
HMMall/HMM/例子/dhmm_em_online_demo.m
HMMall/HMM/例子/fixed_lag_smoother_demo.m
HMMall/HMM/例子/mhmm_em_demo.m
HMMall/HMM/例子/testHMM.m
HMMall/HMM/例子/好例子.m
HMMall/HMM/无用/publishHMM.m
HMMall/How to use the HMM toolbox.txt
HMMall/KPMstats/#histCmpChi2.m#
HMMall/KPMstats/beta_sample.m
HMMall/KPMstats/chisquared_histo.m
HMMall/KPMstats/chisquared_prob.m
HMMall/KPMstats/chisquared_readme.txt
HMMall/KPMstats/chisquared_table.m
HMMall/KPMstats/clg_Mstep.m
HMMall/KPMstats/clg_Mstep_simple.m
HMMall/KPMstats/clg_prob.m
HMMall/KPMstats/condGaussToJoint.m
HMMall/KPMstats/condgaussTrainObserved.m
HMMall/KPMstats/condgauss_sample.m
HMMall/KPMstats/cond_indep_fisher_z.m
HMMall/KPMstats/convertBinaryLabels.m
HMMall/KPMstats/cwr_demo.m
HMMall/KPMstats/cwr_em.m
HMMall/KPMstats/cwr_predict.m
HMMall/KPMstats/cwr_prob.m
HMMall/KPMstats/cwr_readme.txt
HMMall/KPMstats/cwr_test.m
HMMall/KPMstats/dirichletpdf.m
HMMall/KPMstats/dirichletrnd.m
HMMall/KPMstats/dirichlet_sample.m
HMMall/KPMstats/distchck.m
HMMall/KPMstats/eigdec.m
HMMall/KPMstats/est_transmat.m
HMMall/KPMstats/fit_paritioned_model_testfn.m
HMMall/KPMstats/fit_partitioned_model.m
HMMall/KPMstats/gamma_sample.m
HMMall/KPMstats/gaussian_prob.m
HMMall/KPMstats/gaussian_sample.m
HMMall/KPMstats/histCmpChi2.m
HMMall/KPMstats/histCmpChi2.m~
HMMall/KPMstats/KLgauss.m
HMMall/KPMstats/linear_regression.m
HMMall/KPMstats/logist2.m
HMMall/KPMstats/logist2Apply.m
HMMall/KPMstats/logist2ApplyRegularized.m
HMMall/KPMstats/logist2Fit.m
HMMall/KPMstats/logist2FitRegularized.m
HMMall/KPMstats/logistK.m
HMMall/KPMstats/logistK_eval.m
HMMall/KPMstats/marginalize_gaussian.m
HMMall/KPMstats/matrix_normal_pdf.m
HMMall/KPMstats/matrix_T_pdf.m
HMMall/KPMstats/mc_stat_distrib.m
HMMall/KPMstats/mixgauss_classifier_apply.m
HMMall/KPMstats/mixgauss_classifier_train.m
HMMall/KPMstats/mixgauss_em.m
HMMall/KPMstats/mixgauss_init.m
HMMall/KPMstats/mixgauss_Mstep.m
HMMall/KPMstats/mixgauss_prob.m
HMMall/KPMstats/mixgauss_prob_test.m
HMMall/KPMstats/mixgauss_sample.m
HMMall/KPMstats/mkPolyFvec.m
HMMall/KPMstats/mk_unit_norm.m
HMMall/KPMstats/multinomial_prob.m
HMMall/KPMstats/multinomial_sample.m
HMMall/KPMstats/multipdf.m
HMMall/KPMstats/multirnd.m
HMMall/KPMstats/normal_coef.m
HMMall/KPMstats/partial_corr_coef.m
HMMall/KPMstats/parzen.m
HMMall/KPMstats/parzenC.c
HMMall/KPMstats/parzenC.dll
HMMall/KPMstats/parzenC.mexglx
HMMall/KPMstats/parzenC_test.m
HMMall/KPMstats/parzen_fit_select_unif.m
HMMall/KPMstats/pca.m
HMMall/KPMstats/README.txt
HMMall/KPMstats/rndcheck.m
HMMall/KPMstats/sample.m
HMMall/KPMstats/sample_discrete.m
HMMall/KPMstats/sample_gaussian.m
HMMall/KPMstats/standardize.m
HMMall/KPMstats/standardize.m~
HMMall/KPMstats/student_t_logprob.m
HMMall/KPMstats/student_t_prob.m
HMMall/KPMstats/test_dir.m
HMMall/KPMstats/unidrndKPM.m
HMMall/KPMstats/unidrndKPM.m~
HMMall/KPMstats/unif_discrete_sample.m
HMMall/KPMstats/weightedRegression.m
HMMall/KPMtools/approxeq.m
HMMall/KPMtools/approx_unique.m
HMMall/KPMtools/argmax.m
HMMall/KPMtools/argmin.m
HMMall/KPMtools/asdemo.html
HMMall/KPMtools/asdemo.m
HMMall/KPMtools/asort.m
HMMall/KPMtools/asort.m~
HMMall/KPMtools/assert.m
HMMall/KPMtools/assignEdgeNums.m
HMMall/KPMtools/assign_cols.m
HMMall/KPMtools/axis_pct.m
HMMall/KPMtools/bipartiteMatchingDemo.m
HMMall/KPMtools/bipartiteMatchingDemo.m~
HMMall/KPMtools/bipartiteMatchingDemoPlot.m
HMMall/KPMtools/bipartiteMatchingDemoPlot.m~
HMMall/KPMtools/bipartiteMatchingHungarian.m
HMMall/KPMtools/bipartiteMatchingIntProg.m
HMMall/KPMtools/bipartiteMatchingIntProg.m~
HMMall/KPMtools/block.m
HMMall/KPMtools/cell2num.m
HMMall/KPMtools/centeringMatrix.m
HMMall/KPMtools/chi2inv.m
HMMall/KPMtools/choose.m
HMMall/KPMtools/collapse_mog.m
HMMall/KPMtools/colmult.c
HMMall/KPMtools/colmult.mexglx
HMMall/KPMtools/computeROC.m
HMMall/KPMtools/compute_counts.m
HMMall/KPMtools/conf2mahal.m
HMMall/KPMtools/cross_entropy.m
HMMall/KPMtools/dirKPM.m
HMMall/KPMtools/dirKPM.m~
HMMall/KPMtools/div.m
HMMall/KPMtools/draw_circle.m
HMMall/KPMtools/draw_ellipse.m
HMMall/KPMtools/draw_ellipse_axes.m
HMMall/KPMtools/em_converged.m
HMMall/KPMtools/entropy.m
HMMall/KPMtools/exportfig.m
HMMall/KPMtools/extend_domain_table.m
HMMall/KPMtools/factorial.m
HMMall/KPMtools/filepartsLast.m
HMMall/KPMtools/filepartsLast.m~
HMMall/KPMtools/find_equiv_posns.m
HMMall/KPMtools/foptions.m
HMMall/KPMtools/genpathKPM.m
HMMall/KPMtools/g

相关说明

  • 本站资源为会员上传分享交流与学习,如有侵犯您的权益,请联系我们删除.
  • 搜珍网是交换下载平台,只提供交流渠道,下载内容来自于网络,除下载问题外,其它问题请自行百度。更多...
  • 本站已设置防盗链,请勿用迅雷、QQ旋风等下载软件下载资源,下载后用WinRAR最新版进行解压.
  • 如果您发现内容无法下载,请稍后再次尝试;或换浏览器;或者到消费记录里找到下载记录反馈给我们.
  • 下载后发现下载的内容跟说明不相乎,请到消费记录里找到下载记录反馈给我们,经确认后退回积分.
  • 如下载前有疑问,可以通过点击"提供者"的名字,查看对方的联系方式,联系对方咨询.

相关评论

暂无评论内容.

发表评论

*快速评论: 推荐 一般 有密码 和说明不符 不是源码或资料 文件不全 不能解压 纯粹是垃圾
*内  容:
*验 证 码:
搜珍网 www.dssz.com