文件名称:pujulei
-
所属分类:
- 标签属性:
- 上传时间:2015-10-20
-
文件大小:569byte
-
已下载:0次
-
提 供 者:
-
相关连接:无下载说明:别用迅雷下载,失败请重下,重下不扣分!
介绍说明--下载内容来自于网络,使用问题请自行百度
谱聚类算法建立在谱图理论基础上,与传统的聚类算法相比,它具有能在任意形状的样本空间上聚类且收敛于全局最优解的优点。
该算法首先根据给定的样本数据集定义一个描述成对数据点相似度的亲合矩阵,并且计算矩阵的特征值和特征向量 , 然后选择合适 的特征向量聚类不同的数据点。谱聚类算法最初用于计算机视觉 、VLS I 设计等领域, 最近才开始用于机器学习中,并迅速成为国际上机器学习领域的研究热点。-Spectral clustering algorithm based on the spectrum based on the theory, as compared with traditional clustering algorithm, which has the advantage of clustering and convergence in the sample space to the global optimal solution of arbitrary shape.
Firstly, according to the given sample data set defines a descr iption paired data points of similarity affinity matrix, and compute eigenvalues and eigenvectors, and then the appropriate feature vector clustering of different data points. Spectral clustering algorithm was originally used in computer vision, VLS I design and other fields, only recently began to be used in machine learning, and quickly became the focus of international research on the field of machine learning.
该算法首先根据给定的样本数据集定义一个描述成对数据点相似度的亲合矩阵,并且计算矩阵的特征值和特征向量 , 然后选择合适 的特征向量聚类不同的数据点。谱聚类算法最初用于计算机视觉 、VLS I 设计等领域, 最近才开始用于机器学习中,并迅速成为国际上机器学习领域的研究热点。-Spectral clustering algorithm based on the spectrum based on the theory, as compared with traditional clustering algorithm, which has the advantage of clustering and convergence in the sample space to the global optimal solution of arbitrary shape.
Firstly, according to the given sample data set defines a descr iption paired data points of similarity affinity matrix, and compute eigenvalues and eigenvectors, and then the appropriate feature vector clustering of different data points. Spectral clustering algorithm was originally used in computer vision, VLS I design and other fields, only recently began to be used in machine learning, and quickly became the focus of international research on the field of machine learning.
(系统自动生成,下载前可以参看下载内容)
下载文件列表
pujulei.txt
本网站为编程资源及源代码搜集、介绍的搜索网站,版权归原作者所有! 粤ICP备11031372号
1999-2046 搜珍网 All Rights Reserved.