文件名称:Gaussian-process-regression
介绍说明--下载内容来自于网络,使用问题请自行百度
高斯过程回归及分类的代码,内容全,有实例,注释清晰。包括分类系列和预测回归系列,值得感兴趣的同学学习借鉴。-Gaussian process regression and classification code, content, there are instances, comments clear.Including classification and forecasting return series, is worthy of reference for anyone interested in learning.
(系统自动生成,下载前可以参看下载内容)
下载文件列表
gpml/doc/alg21.gif
gpml/doc/alg31.gif
gpml/doc/alg32.gif
gpml/doc/alg35.gif
gpml/doc/alg36.gif
gpml/doc/alg51.gif
gpml/doc/alg52.gif
gpml/doc/classification.html
gpml/doc/fig2d.gif
gpml/doc/fig2de1.gif
gpml/doc/fig2de2.gif
gpml/doc/fig2de3.gif
gpml/doc/fig2dl1.gif
gpml/doc/fig2dl2.gif
gpml/doc/fig2dl3.gif
gpml/doc/figepp.gif
gpml/doc/figepp2.gif
gpml/doc/figl.gif
gpml/doc/figl1.gif
gpml/doc/figlapp.gif
gpml/doc/figlapp2.gif
gpml/doc/figlf.gif
gpml/doc/figlm.gif
gpml/doc/index.html
gpml/doc/regression.html
gpml/doc/sparse-approx.html
gpml/doc/style.css
gpml/gpml/approxEP.m
gpml/gpml/approximations.m
gpml/gpml/approxLA.m
gpml/gpml/binaryEPGP.m
gpml/gpml/binaryGP.m
gpml/gpml/binaryLaplaceGP.m
gpml/gpml/Contents.m
gpml/gpml/Copyright
gpml/gpml/covConst.m
gpml/gpml/covFunctions.m
gpml/gpml/covLINard.m
gpml/gpml/covLINone.m
gpml/gpml/covMatern3iso.m
gpml/gpml/covMatern5iso.m
gpml/gpml/covNNone.m
gpml/gpml/covNoise.m
gpml/gpml/covPeriodic.m
gpml/gpml/covProd.m
gpml/gpml/covRQard.m
gpml/gpml/covRQiso.m
gpml/gpml/covSEard.m
gpml/gpml/covSEiso.m
gpml/gpml/covSum.m
gpml/gpml/cumGauss.m
gpml/gpml/gauher.m
gpml/gpml/gpr.m
gpml/gpml/gprSRPP.m
gpml/gpml/likelihoods.m
gpml/gpml/logistic.m
gpml/gpml/Makefile
gpml/gpml/minimize.m
gpml/gpml/solve_chol.c
gpml/gpml/solve_chol.m
gpml/gpml/sq_dist.c
gpml/gpml/sq_dist.m
gpml/gpml-demo/Contents.m
gpml/gpml-demo/data_6darm.mat
gpml/gpml-demo/data_boston.mat
gpml/gpml-demo/demo_ep_2d.m
gpml/gpml-demo/demo_ep_usps.m
gpml/gpml-demo/demo_gparm.m
gpml/gpml-demo/demo_gpr.m
gpml/gpml-demo/demo_gprsparse.m
gpml/gpml-demo/demo_laplace_2d.m
gpml/gpml-demo/demo_laplace_usps.m
gpml/gpml-demo/gparm_fval.fig
gpml/gpml-demo/gparm_res.std.fig
gpml/gpml-demo/gprgai.m
gpml/README
gaussian/calcGP.m
gaussian/GPtutorial.m
gaussian/GPtutorialFcn.m
gaussian/hypSample.m
gaussian/k_GP.m
gaussian/stdRegion.m
gpml/doc
gpml/gpml
gpml/gpml-demo
gpml
gaussian
gpml/doc/alg31.gif
gpml/doc/alg32.gif
gpml/doc/alg35.gif
gpml/doc/alg36.gif
gpml/doc/alg51.gif
gpml/doc/alg52.gif
gpml/doc/classification.html
gpml/doc/fig2d.gif
gpml/doc/fig2de1.gif
gpml/doc/fig2de2.gif
gpml/doc/fig2de3.gif
gpml/doc/fig2dl1.gif
gpml/doc/fig2dl2.gif
gpml/doc/fig2dl3.gif
gpml/doc/figepp.gif
gpml/doc/figepp2.gif
gpml/doc/figl.gif
gpml/doc/figl1.gif
gpml/doc/figlapp.gif
gpml/doc/figlapp2.gif
gpml/doc/figlf.gif
gpml/doc/figlm.gif
gpml/doc/index.html
gpml/doc/regression.html
gpml/doc/sparse-approx.html
gpml/doc/style.css
gpml/gpml/approxEP.m
gpml/gpml/approximations.m
gpml/gpml/approxLA.m
gpml/gpml/binaryEPGP.m
gpml/gpml/binaryGP.m
gpml/gpml/binaryLaplaceGP.m
gpml/gpml/Contents.m
gpml/gpml/Copyright
gpml/gpml/covConst.m
gpml/gpml/covFunctions.m
gpml/gpml/covLINard.m
gpml/gpml/covLINone.m
gpml/gpml/covMatern3iso.m
gpml/gpml/covMatern5iso.m
gpml/gpml/covNNone.m
gpml/gpml/covNoise.m
gpml/gpml/covPeriodic.m
gpml/gpml/covProd.m
gpml/gpml/covRQard.m
gpml/gpml/covRQiso.m
gpml/gpml/covSEard.m
gpml/gpml/covSEiso.m
gpml/gpml/covSum.m
gpml/gpml/cumGauss.m
gpml/gpml/gauher.m
gpml/gpml/gpr.m
gpml/gpml/gprSRPP.m
gpml/gpml/likelihoods.m
gpml/gpml/logistic.m
gpml/gpml/Makefile
gpml/gpml/minimize.m
gpml/gpml/solve_chol.c
gpml/gpml/solve_chol.m
gpml/gpml/sq_dist.c
gpml/gpml/sq_dist.m
gpml/gpml-demo/Contents.m
gpml/gpml-demo/data_6darm.mat
gpml/gpml-demo/data_boston.mat
gpml/gpml-demo/demo_ep_2d.m
gpml/gpml-demo/demo_ep_usps.m
gpml/gpml-demo/demo_gparm.m
gpml/gpml-demo/demo_gpr.m
gpml/gpml-demo/demo_gprsparse.m
gpml/gpml-demo/demo_laplace_2d.m
gpml/gpml-demo/demo_laplace_usps.m
gpml/gpml-demo/gparm_fval.fig
gpml/gpml-demo/gparm_res.std.fig
gpml/gpml-demo/gprgai.m
gpml/README
gaussian/calcGP.m
gaussian/GPtutorial.m
gaussian/GPtutorialFcn.m
gaussian/hypSample.m
gaussian/k_GP.m
gaussian/stdRegion.m
gpml/doc
gpml/gpml
gpml/gpml-demo
gpml
gaussian
本网站为编程资源及源代码搜集、介绍的搜索网站,版权归原作者所有! 粤ICP备11031372号
1999-2046 搜珍网 All Rights Reserved.