文件名称:neural-network
介绍说明--下载内容来自于网络,使用问题请自行百度
深度学习python实现,并附有MNIST上的测试程序,准确率98 以上-Deep learning learns low and high-level features large amounts of unlabeled data, improving classification on different, labeled, datasets. Deep learning can achieve an accuracy of 98 on the MNIST dataset.
(系统自动生成,下载前可以参看下载内容)
下载文件列表
neural-network/
neural-network/.gitignore
neural-network/deep/
neural-network/deep/deep.py
neural-network/deep/display_network.py
neural-network/deep/lazy_deep.py
neural-network/deep/neurolib.py
neural-network/deep/numerical_gradient.py
neural-network/deep/sample_images.py
neural-network/deep/selftaught.py
neural-network/deep/softmax.py
neural-network/deep/sparse_autoencoder.py
neural-network/display_network.py
neural-network/neurolib.py
neural-network/numerical_gradient.py
neural-network/pca/
neural-network/pca/display_network.py
neural-network/pca/pca.py
neural-network/pca/pca2d.py
neural-network/pca/pca_gen.py
neural-network/pca/sample_images.py
neural-network/rae/
neural-network/rae/.gitignore
neural-network/rae/codeDataMoviesEMNLP/
neural-network/rae/codeDataMoviesEMNLP/code/
neural-network/rae/codeDataMoviesEMNLP/code/classifyWithRAE.m
neural-network/rae/codeDataMoviesEMNLP/code/computeCostAndGradRAE.m
neural-network/rae/codeDataMoviesEMNLP/code/forwardPropRAE.m
neural-network/rae/codeDataMoviesEMNLP/code/getAccuracy.m
neural-network/rae/codeDataMoviesEMNLP/code/getFeatures.m
neural-network/rae/codeDataMoviesEMNLP/code/getW.m
neural-network/rae/codeDataMoviesEMNLP/code/initializeParameters.m
neural-network/rae/codeDataMoviesEMNLP/code/RAECost.m
neural-network/rae/codeDataMoviesEMNLP/code/read_rtPolarity.m
neural-network/rae/codeDataMoviesEMNLP/code/soft_cost.m
neural-network/rae/codeDataMoviesEMNLP/code/trainTestRAE.m
neural-network/rae/codeDataMoviesEMNLP/code/tree2.m
neural-network/rae/codeNIPS2011/
neural-network/rae/codeNIPS2011/cell2str.m
neural-network/rae/codeNIPS2011/convertStanfordParserTrees.m
neural-network/rae/codeNIPS2011/getVectors.m
neural-network/rae/codeNIPS2011/reformatTree.m
neural-network/rae/codeNIPS2011/reorder.m
neural-network/rae/codeNIPS2011/run.m
neural-network/rae/codeNIPS2011/runReformatTree.m
neural-network/rae/codeNIPS2011/tree.m
neural-network/rae/codeNIPS2011/WordLookup.m
neural-network/rae/display_network.py
neural-network/rae/neurolib.py
neural-network/rae/phrase2Vector.sh
neural-network/rae/pyparse.py
neural-network/rae/pypm.py
neural-network/rae/sample_images.py
neural-network/rae/scratch.py
neural-network/rae/sparse_autoencoder.py
neural-network/rae/stanford-parser-2011-09-14/
neural-network/rae/stanford-parser-2011-09-14/bin/
neural-network/rae/stanford-parser-2011-09-14/bin/makeSerialized.csh
neural-network/rae/stanford-parser-2011-09-14/bin/run-tb-preproc
neural-network/rae/stanford-parser-2011-09-14/build.xml
neural-network/rae/stanford-parser-2011-09-14/conf/
neural-network/rae/stanford-parser-2011-09-14/conf/atb-latest.conf
neural-network/rae/stanford-parser-2011-09-14/conf/ftb-latest.conf
neural-network/rae/stanford-parser-2011-09-14/install.sh
neural-network/rae/stanford-parser-2011-09-14/lexparser-gui.bat
neural-network/rae/stanford-parser-2011-09-14/lexparser-gui.command
neural-network/rae/stanford-parser-2011-09-14/lexparser-gui.sh
neural-network/rae/stanford-parser-2011-09-14/lexparser-lang-train-test.sh
neural-network/rae/stanford-parser-2011-09-14/lexparser-lang.sh
neural-network/rae/stanford-parser-2011-09-14/lexparser.bat
neural-network/rae/stanford-parser-2011-09-14/lexparser.sh
neural-network/rae/stanford-parser-2011-09-14/lexparser_lang.def
neural-network/rae/stanford-parser-2011-09-14/Makefile
neural-network/rae/stanford-parser-2011-09-14/ParserDemo.java
neural-network/rae/stanford-parser-2011-09-14/ParserDemo2.java
neural-network/rae/stanford-parser-2011-09-14/stanford-parser.jar
neural-network/rae/treeparser.py
neural-network/README
neural-network/sample_images.py
neural-network/selftaught/
neural-network/selftaught/display_network.py
neural-network/selftaught/neurolib.py
neural-network/selftaught/numerical_gradient.py
neural-network/selftaught/sample_images.py
neural-network/selftaught/selftaught.py
neural-network/selftaught/softmax.py
neural-network/selftaught/sparse_autoencoder.py
neural-network/selftaught/train_sparse_autoencoder_on_5to9.py
neural-network/softmax/
neural-network/softmax/display_network.py
neural-network/softmax/numerical_gradient.py
neural-network/softmax/sample_images.py
neural-network/softmax/softmax.py
neural-network/softmax/testlib.py
neural-network/softmax/test_numerical_gradient.py
neural-network/softmax/test_softmax.py
neural-network/sparse_autoencoder.py
neural-network/tests/
neural-network/tests/display_network.py
neural-network/tests/neurolib.py
neural-network/tests/numerical_gradient.py
neural-network/tests/sample_images.py
neural-network/tests/sparse_autoencoder.py
neural-network/tests/testlib.py
neural-network/tests/test_numerical_gradient.py
neural-network/tests/test_sparse_autoencoder.py
neural-network/train_sparse_autoencoder_on_matlab_images.py
neural-network/train_sparse_autoencoder_on_mnist.py
neural-network/.gitignore
neural-network/deep/
neural-network/deep/deep.py
neural-network/deep/display_network.py
neural-network/deep/lazy_deep.py
neural-network/deep/neurolib.py
neural-network/deep/numerical_gradient.py
neural-network/deep/sample_images.py
neural-network/deep/selftaught.py
neural-network/deep/softmax.py
neural-network/deep/sparse_autoencoder.py
neural-network/display_network.py
neural-network/neurolib.py
neural-network/numerical_gradient.py
neural-network/pca/
neural-network/pca/display_network.py
neural-network/pca/pca.py
neural-network/pca/pca2d.py
neural-network/pca/pca_gen.py
neural-network/pca/sample_images.py
neural-network/rae/
neural-network/rae/.gitignore
neural-network/rae/codeDataMoviesEMNLP/
neural-network/rae/codeDataMoviesEMNLP/code/
neural-network/rae/codeDataMoviesEMNLP/code/classifyWithRAE.m
neural-network/rae/codeDataMoviesEMNLP/code/computeCostAndGradRAE.m
neural-network/rae/codeDataMoviesEMNLP/code/forwardPropRAE.m
neural-network/rae/codeDataMoviesEMNLP/code/getAccuracy.m
neural-network/rae/codeDataMoviesEMNLP/code/getFeatures.m
neural-network/rae/codeDataMoviesEMNLP/code/getW.m
neural-network/rae/codeDataMoviesEMNLP/code/initializeParameters.m
neural-network/rae/codeDataMoviesEMNLP/code/RAECost.m
neural-network/rae/codeDataMoviesEMNLP/code/read_rtPolarity.m
neural-network/rae/codeDataMoviesEMNLP/code/soft_cost.m
neural-network/rae/codeDataMoviesEMNLP/code/trainTestRAE.m
neural-network/rae/codeDataMoviesEMNLP/code/tree2.m
neural-network/rae/codeNIPS2011/
neural-network/rae/codeNIPS2011/cell2str.m
neural-network/rae/codeNIPS2011/convertStanfordParserTrees.m
neural-network/rae/codeNIPS2011/getVectors.m
neural-network/rae/codeNIPS2011/reformatTree.m
neural-network/rae/codeNIPS2011/reorder.m
neural-network/rae/codeNIPS2011/run.m
neural-network/rae/codeNIPS2011/runReformatTree.m
neural-network/rae/codeNIPS2011/tree.m
neural-network/rae/codeNIPS2011/WordLookup.m
neural-network/rae/display_network.py
neural-network/rae/neurolib.py
neural-network/rae/phrase2Vector.sh
neural-network/rae/pyparse.py
neural-network/rae/pypm.py
neural-network/rae/sample_images.py
neural-network/rae/scratch.py
neural-network/rae/sparse_autoencoder.py
neural-network/rae/stanford-parser-2011-09-14/
neural-network/rae/stanford-parser-2011-09-14/bin/
neural-network/rae/stanford-parser-2011-09-14/bin/makeSerialized.csh
neural-network/rae/stanford-parser-2011-09-14/bin/run-tb-preproc
neural-network/rae/stanford-parser-2011-09-14/build.xml
neural-network/rae/stanford-parser-2011-09-14/conf/
neural-network/rae/stanford-parser-2011-09-14/conf/atb-latest.conf
neural-network/rae/stanford-parser-2011-09-14/conf/ftb-latest.conf
neural-network/rae/stanford-parser-2011-09-14/install.sh
neural-network/rae/stanford-parser-2011-09-14/lexparser-gui.bat
neural-network/rae/stanford-parser-2011-09-14/lexparser-gui.command
neural-network/rae/stanford-parser-2011-09-14/lexparser-gui.sh
neural-network/rae/stanford-parser-2011-09-14/lexparser-lang-train-test.sh
neural-network/rae/stanford-parser-2011-09-14/lexparser-lang.sh
neural-network/rae/stanford-parser-2011-09-14/lexparser.bat
neural-network/rae/stanford-parser-2011-09-14/lexparser.sh
neural-network/rae/stanford-parser-2011-09-14/lexparser_lang.def
neural-network/rae/stanford-parser-2011-09-14/Makefile
neural-network/rae/stanford-parser-2011-09-14/ParserDemo.java
neural-network/rae/stanford-parser-2011-09-14/ParserDemo2.java
neural-network/rae/stanford-parser-2011-09-14/stanford-parser.jar
neural-network/rae/treeparser.py
neural-network/README
neural-network/sample_images.py
neural-network/selftaught/
neural-network/selftaught/display_network.py
neural-network/selftaught/neurolib.py
neural-network/selftaught/numerical_gradient.py
neural-network/selftaught/sample_images.py
neural-network/selftaught/selftaught.py
neural-network/selftaught/softmax.py
neural-network/selftaught/sparse_autoencoder.py
neural-network/selftaught/train_sparse_autoencoder_on_5to9.py
neural-network/softmax/
neural-network/softmax/display_network.py
neural-network/softmax/numerical_gradient.py
neural-network/softmax/sample_images.py
neural-network/softmax/softmax.py
neural-network/softmax/testlib.py
neural-network/softmax/test_numerical_gradient.py
neural-network/softmax/test_softmax.py
neural-network/sparse_autoencoder.py
neural-network/tests/
neural-network/tests/display_network.py
neural-network/tests/neurolib.py
neural-network/tests/numerical_gradient.py
neural-network/tests/sample_images.py
neural-network/tests/sparse_autoencoder.py
neural-network/tests/testlib.py
neural-network/tests/test_numerical_gradient.py
neural-network/tests/test_sparse_autoencoder.py
neural-network/train_sparse_autoencoder_on_matlab_images.py
neural-network/train_sparse_autoencoder_on_mnist.py
本网站为编程资源及源代码搜集、介绍的搜索网站,版权归原作者所有! 粤ICP备11031372号
1999-2046 搜珍网 All Rights Reserved.