文件名称:LOMO_XQDA
介绍说明--下载内容来自于网络,使用问题请自行百度
行人重定位算法,识别效果非常好,有源码和文章-Person re-identification is an important technique towards
automatic search of a person’s presence in a surveillance
video. Two fundamental problems are critical for
person re-identification, feature representation and metric
learning. An effective feature representation should be robust
to illumination and viewpoint changes, and a discriminant
metric should be learned to match various person images.
In this paper, we propose an effective feature representation
called Local Maximal Occurrence (LOMO), and
a subspace and metric learning method called Cross-view
Quadratic Discriminant Analysis (XQDA). The LOMO feature
analyzes the horizontal occurrence of local features,
and maximizes the occurrence to make a stable representation
against viewpoint changes. Besides, to handle illumination
variations, we apply the Retinex transform and a
scale invariant texture operator. To learn a discriminant
metric, we propose to learn a discriminant low dimensional
subspace by cross-vi
automatic search of a person’s presence in a surveillance
video. Two fundamental problems are critical for
person re-identification, feature representation and metric
learning. An effective feature representation should be robust
to illumination and viewpoint changes, and a discriminant
metric should be learned to match various person images.
In this paper, we propose an effective feature representation
called Local Maximal Occurrence (LOMO), and
a subspace and metric learning method called Cross-view
Quadratic Discriminant Analysis (XQDA). The LOMO feature
analyzes the horizontal occurrence of local features,
and maximizes the occurrence to make a stable representation
against viewpoint changes. Besides, to handle illumination
variations, we apply the Retinex transform and a
scale invariant texture operator. To learn a discriminant
metric, we propose to learn a discriminant low dimensional
subspace by cross-vi
(系统自动生成,下载前可以参看下载内容)
下载文件列表
LOMO_XQDA/bin/Retinex.mexa64
LOMO_XQDA/bin/Retinex.mexglx
LOMO_XQDA/bin/Retinex.mexw32
LOMO_XQDA/bin/Retinex.mexw64
LOMO_XQDA/code/Demo_LOMO.m
LOMO_XQDA/code/Demo_XQDA.m
LOMO_XQDA/code/EvalCMC.m
LOMO_XQDA/code/LOMO.m
LOMO_XQDA/code/MahDist.m
LOMO_XQDA/code/SILTP.m
LOMO_XQDA/code/XQDA.m
LOMO_XQDA/images/000_45_a.bmp
LOMO_XQDA/images/000_45_b.bmp
LOMO_XQDA/Liao-CVPR15-LOMO-XQDA.pdf
LOMO_XQDA/LICENSE
LOMO_XQDA/README.txt
LOMO_XQDA/results/cuhk01_lomo_xqda.mat
LOMO_XQDA/results/cuhk03_detected_lomo_xqda.mat
LOMO_XQDA/results/cuhk03_labeled_lomo_xqda.mat
LOMO_XQDA/results/qmul_grid_lomo_xqda.mat
LOMO_XQDA/results/qmul_grid_lomo_xqda_camera-network.mat
LOMO_XQDA/results/viper_lomo_xqda.mat
LOMO_XQDA/bin
LOMO_XQDA/code
LOMO_XQDA/data
LOMO_XQDA/images
LOMO_XQDA/results
LOMO_XQDA
LOMO_XQDA/bin/Retinex.mexglx
LOMO_XQDA/bin/Retinex.mexw32
LOMO_XQDA/bin/Retinex.mexw64
LOMO_XQDA/code/Demo_LOMO.m
LOMO_XQDA/code/Demo_XQDA.m
LOMO_XQDA/code/EvalCMC.m
LOMO_XQDA/code/LOMO.m
LOMO_XQDA/code/MahDist.m
LOMO_XQDA/code/SILTP.m
LOMO_XQDA/code/XQDA.m
LOMO_XQDA/images/000_45_a.bmp
LOMO_XQDA/images/000_45_b.bmp
LOMO_XQDA/Liao-CVPR15-LOMO-XQDA.pdf
LOMO_XQDA/LICENSE
LOMO_XQDA/README.txt
LOMO_XQDA/results/cuhk01_lomo_xqda.mat
LOMO_XQDA/results/cuhk03_detected_lomo_xqda.mat
LOMO_XQDA/results/cuhk03_labeled_lomo_xqda.mat
LOMO_XQDA/results/qmul_grid_lomo_xqda.mat
LOMO_XQDA/results/qmul_grid_lomo_xqda_camera-network.mat
LOMO_XQDA/results/viper_lomo_xqda.mat
LOMO_XQDA/bin
LOMO_XQDA/code
LOMO_XQDA/data
LOMO_XQDA/images
LOMO_XQDA/results
LOMO_XQDA
本网站为编程资源及源代码搜集、介绍的搜索网站,版权归原作者所有! 粤ICP备11031372号
1999-2046 搜珍网 All Rights Reserved.