文件名称:one
-
所属分类:
- 标签属性:
- 上传时间:2017-02-28
-
文件大小:369.1kb
-
已下载:0次
-
提 供 者:
-
相关连接:无下载说明:别用迅雷下载,失败请重下,重下不扣分!
介绍说明--下载内容来自于网络,使用问题请自行百度
基于叶片数字图像的植物识别是自动植物分类研究的热点。但是随着植物种类的增加,传统的分类方法由 于提取的特征比较单一或者分类器结构过于简单,导致叶片识别率较低。为此,本文提出使用纹理特征结合形状 特征进行识别,并且使用深度信念网络构架作为分类器。纹理特征通过局部二值模式、Gabor 滤波和灰度共生矩阵 方法得到。而形状特征向量由 Hu 氏不变量和傅里叶描述子组成。为了避免过拟合现象,使用“dropout”方法训练 深度信念网络。这种基于多特征融合的深度信念网络的植物识别方法-Plant based on digital image recognition is a hotspot of research on automatic classification.But with the increase of plant species, the traditional classification method by the extraction of characteristics or more single classifier structure is too simple, leading to a lower leaf recognition rate.To this end, this paper proposes using the texture characteristics in combination with characteristics of shape, which can identify the belief network architecture and using the depth as a classifier.Texture characteristics by local binary pattern, Gabor filter and gray level co-occurrence matrix method.And shape characteristic vector by Hu s invariant and the Fourier descr iptor.In order to avoid over fitting phenomenon, dropout method is used to train deep belief networks.This belief network based on feature fusion depth plant identification method
(系统自动生成,下载前可以参看下载内容)
下载文件列表
基于多特征融合和深度信念网络的植物叶片识别_刘念.pdf
本网站为编程资源及源代码搜集、介绍的搜索网站,版权归原作者所有! 粤ICP备11031372号
1999-2046 搜珍网 All Rights Reserved.