文件名称:two
-
所属分类:
- 标签属性:
- 上传时间:2017-02-28
-
文件大小:559.76kb
-
已下载:1次
-
提 供 者:
-
相关连接:无下载说明:别用迅雷下载,失败请重下,重下不扣分!
介绍说明--下载内容来自于网络,使用问题请自行百度
:植物种类识别方法主要是根据叶片低维特征进行自动化鉴定。然而,低维特征不能全面描述叶片信息,识别准确率低,本文提
出一种基于多特征降维的植物叶片识别方法。首先通过数字图像处理技术对植物叶片彩色样本图像进行预处理,获得去除颜色、虫洞、 叶柄和背景的叶片二值图像、灰度图像和纹理图像。然后对二值图像提取几何特征和结构特征,对灰度图像提取 Hu不变矩特征、灰 度共生矩阵特征、局部二值模式特征和 Gabor 特征,对纹理图像提取分形维数,共得到 2183 维特征参数。再采用主成分分析与线性 评判分析相结合的方法对叶片多特征进行特征降维,将叶片高维特征数据降到低维空间。使用降维后的训练样本特征数据对支持向量 机分类器进行训练-plant species identification method is mainly based on blade automatic identification of low dimensional characteristics.However, can not fully describe blade low-dimensional feature information, identification accuracy is low, in this paper
A kind of plant leaves recognition method based on multiple feature dimension reduction.First by digital image processing technology to the plant leaf color sample image preprocessing, obtain background color removal, wormhole, petioles, and the blades of a binary image, gray image and texture image.Then the binary image to extract the geometric characteristics and characteristics of structure and characteristics of gray image extraction Hu moment invariants, gray co-occurrence matrix feature, local binary pattern features and Gabor, to extract the fractal dimension of texture image, get 2183 d characteristic parameters.By principal component analysis and linear uation analysis method of combining the characteristics of blade more feature dimensi
出一种基于多特征降维的植物叶片识别方法。首先通过数字图像处理技术对植物叶片彩色样本图像进行预处理,获得去除颜色、虫洞、 叶柄和背景的叶片二值图像、灰度图像和纹理图像。然后对二值图像提取几何特征和结构特征,对灰度图像提取 Hu不变矩特征、灰 度共生矩阵特征、局部二值模式特征和 Gabor 特征,对纹理图像提取分形维数,共得到 2183 维特征参数。再采用主成分分析与线性 评判分析相结合的方法对叶片多特征进行特征降维,将叶片高维特征数据降到低维空间。使用降维后的训练样本特征数据对支持向量 机分类器进行训练-plant species identification method is mainly based on blade automatic identification of low dimensional characteristics.However, can not fully describe blade low-dimensional feature information, identification accuracy is low, in this paper
A kind of plant leaves recognition method based on multiple feature dimension reduction.First by digital image processing technology to the plant leaf color sample image preprocessing, obtain background color removal, wormhole, petioles, and the blades of a binary image, gray image and texture image.Then the binary image to extract the geometric characteristics and characteristics of structure and characteristics of gray image extraction Hu moment invariants, gray co-occurrence matrix feature, local binary pattern features and Gabor, to extract the fractal dimension of texture image, get 2183 d characteristic parameters.By principal component analysis and linear uation analysis method of combining the characteristics of blade more feature dimensi
(系统自动生成,下载前可以参看下载内容)
下载文件列表
基于多特征降维的植物叶片识别方法研究_郑一力 (1).pdf
本网站为编程资源及源代码搜集、介绍的搜索网站,版权归原作者所有! 粤ICP备11031372号
1999-2046 搜珍网 All Rights Reserved.