文件名称:Traveling-Salesman-Problem---Nearest-Neighbor
-
所属分类:
- 标签属性:
- 上传时间:2017-05-25
-
文件大小:4.42kb
-
已下载:0次
-
提 供 者:
-
相关连接:无下载说明:别用迅雷下载,失败请重下,重下不扣分!
介绍说明--下载内容来自于网络,使用问题请自行百度
Nearest Neighbour algorithm for a TSP with 7 cities. The solution changes as the starting point is changed
The nearest neighbour (NN) algorithm (a greedy algorithm) lets the salesperson choose the nearest unvisited city as his next move. This algorithm quickly yields an effectively short route. For N cities randomly distributed on a plane, the algorithm on average yields a path 25 longer than the shortest possible path.[17] However, there exist many specially arranged city distributions which make the NN algorithm give the worst route (Gutin, Yeo, and Zverovich, 2002). This is true for both asymmetric and symmetric TSPs (Gutin and Yeo, 2007).-Nearest Neighbour algorithm for a TSP with 7 cities. The solution changes as the starting point is changed
The nearest neighbour (NN) algorithm (a greedy algorithm) lets the salesperson choose the nearest unvisited city as his next move. This algorithm quickly yields an effectively short route. For N cities randomly distributed on a plane, the algorithm on average yields a path 25 longer than the shortest possible path.[17] However, there exist many specially arranged city distributions which make the NN algorithm give the worst route (Gutin, Yeo, and Zverovich, 2002). This is true for both asymmetric and symmetric TSPs (Gutin and Yeo, 2007).
The nearest neighbour (NN) algorithm (a greedy algorithm) lets the salesperson choose the nearest unvisited city as his next move. This algorithm quickly yields an effectively short route. For N cities randomly distributed on a plane, the algorithm on average yields a path 25 longer than the shortest possible path.[17] However, there exist many specially arranged city distributions which make the NN algorithm give the worst route (Gutin, Yeo, and Zverovich, 2002). This is true for both asymmetric and symmetric TSPs (Gutin and Yeo, 2007).-Nearest Neighbour algorithm for a TSP with 7 cities. The solution changes as the starting point is changed
The nearest neighbour (NN) algorithm (a greedy algorithm) lets the salesperson choose the nearest unvisited city as his next move. This algorithm quickly yields an effectively short route. For N cities randomly distributed on a plane, the algorithm on average yields a path 25 longer than the shortest possible path.[17] However, there exist many specially arranged city distributions which make the NN algorithm give the worst route (Gutin, Yeo, and Zverovich, 2002). This is true for both asymmetric and symmetric TSPs (Gutin and Yeo, 2007).
(系统自动生成,下载前可以参看下载内容)
下载文件列表
Traveling Salesman Problem - Nearest Neighbor.txt
本网站为编程资源及源代码搜集、介绍的搜索网站,版权归原作者所有! 粤ICP备11031372号
1999-2046 搜珍网 All Rights Reserved.