文件名称:集合论 - 副本
介绍说明--下载内容来自于网络,使用问题请自行百度
选取一定点X0,连接距离其最近的顶点X1,再连接距X1最近的顶点X2,依次类推下去,直到最后目的地。
数学语言:贪心算法,在一给定的无向图G = (V, E) 中,(u, v) 代表连接顶点 u 与顶点 v 的边(即),而 w(u, v) 代表此边的权重,若存在 T 为 E 的子集(即)且为无循环图,使得 w(T) 最小,则此 T 为 G 的最小生成树。(Select a point X0, connect it from its nearest vertex X1, and then connect the nearest vertex X2 from X1, and go on and on until the final destination.
The language of Mathematics: greedy algorithm, graph G = in a given no (V, E), (U, V) on behalf of connected vertex u and vertex v (i.e., w) and edges (U, V) on behalf of the weight of this side, if there is a subset of E (i.e. T) and no cycle diagram makes w (T) is minimum, the T for the minimum spanning tree G.)
数学语言:贪心算法,在一给定的无向图G = (V, E) 中,(u, v) 代表连接顶点 u 与顶点 v 的边(即),而 w(u, v) 代表此边的权重,若存在 T 为 E 的子集(即)且为无循环图,使得 w(T) 最小,则此 T 为 G 的最小生成树。(Select a point X0, connect it from its nearest vertex X1, and then connect the nearest vertex X2 from X1, and go on and on until the final destination.
The language of Mathematics: greedy algorithm, graph G = in a given no (V, E), (U, V) on behalf of connected vertex u and vertex v (i.e., w) and edges (U, V) on behalf of the weight of this side, if there is a subset of E (i.e. T) and no cycle diagram makes w (T) is minimum, the T for the minimum spanning tree G.)
相关搜索: 最小生成树
(系统自动生成,下载前可以参看下载内容)
下载文件列表
[Content_Types].xml
_rels\.rels
word\_rels\document.xml.rels
word\document.xml
word\footnotes.xml
word\endnotes.xml
word\theme\theme1.xml
word\settings.xml
word\styles.xml
word\numbering.xml
docProps\app.xml
customXml\_rels\item1.xml.rels
customXml\itemProps1.xml
word\fontTable.xml
customXml\item1.xml
word\webSettings.xml
word\stylesWithEffects.xml
docProps\core.xml
_rels\.rels
word\_rels\document.xml.rels
word\document.xml
word\footnotes.xml
word\endnotes.xml
word\theme\theme1.xml
word\settings.xml
word\styles.xml
word\numbering.xml
docProps\app.xml
customXml\_rels\item1.xml.rels
customXml\itemProps1.xml
word\fontTable.xml
customXml\item1.xml
word\webSettings.xml
word\stylesWithEffects.xml
docProps\core.xml
本网站为编程资源及源代码搜集、介绍的搜索网站,版权归原作者所有! 粤ICP备11031372号
1999-2046 搜珍网 All Rights Reserved.