文件名称:ImgHOGFeature
介绍说明--下载内容来自于网络,使用问题请自行百度
HOG特征计算,(1)将输入的彩图转换为灰度图;
(2)采用Gamma校*对输入图像进行颜色空间的标准化(归一化);目的是调节图像的对比度,降低图像局部的阴影和光照变化所造成的影响,同时可以抑制噪音的干扰;
(3)计算梯度;主要是为了捕获轮廓信息,同时进一步弱化光照的干扰。
(4)将梯度投影到单元的梯度方向;目的是为局部图像区域提供一个编码,
(5)将所有单元格在块上进行归一化;归一化能够更进一步对光照、阴影和边缘进行压缩,通常,每个单元格由多个不同的块共享,但它的归一化是基于不同块的,所以计算结果也不一样。因此,一个单元格的特征会以不同的结果多次出现在最后的向量中。我们将归一化之后的块描述符就称之为HOG描述符。
(6)收集得到检测空间所有块的HOG特征;该步骤就是将检测窗口中所有重叠的块进行HOG特征的收集,并将它们结合成最终的特征向量供分类使用。(HOG feature calculation)
(2)采用Gamma校*对输入图像进行颜色空间的标准化(归一化);目的是调节图像的对比度,降低图像局部的阴影和光照变化所造成的影响,同时可以抑制噪音的干扰;
(3)计算梯度;主要是为了捕获轮廓信息,同时进一步弱化光照的干扰。
(4)将梯度投影到单元的梯度方向;目的是为局部图像区域提供一个编码,
(5)将所有单元格在块上进行归一化;归一化能够更进一步对光照、阴影和边缘进行压缩,通常,每个单元格由多个不同的块共享,但它的归一化是基于不同块的,所以计算结果也不一样。因此,一个单元格的特征会以不同的结果多次出现在最后的向量中。我们将归一化之后的块描述符就称之为HOG描述符。
(6)收集得到检测空间所有块的HOG特征;该步骤就是将检测窗口中所有重叠的块进行HOG特征的收集,并将它们结合成最终的特征向量供分类使用。(HOG feature calculation)
(系统自动生成,下载前可以参看下载内容)
下载文件列表
ImgHOGFeature.m
本网站为编程资源及源代码搜集、介绍的搜索网站,版权归原作者所有! 粤ICP备11031372号
1999-2046 搜珍网 All Rights Reserved.