CDN加速镜像 | 设为首页 | 加入收藏夹
当前位置: 首页 资源下载 源码下载 数值算法/人工智能 matlab例程

文件名称:stanford_dl_ex-master

  • 所属分类:
  • 标签属性:
  • 上传时间:
    2017-08-29
  • 文件大小:
    147kb
  • 已下载:
    0次
  • 提 供 者:
  • 相关连接:
  • 下载说明:
    别用迅雷下载,失败请重下,重下不扣分!

介绍说明--下载内容来自于网络,使用问题请自行百度

coursera斯坦福Andrew Ng的深度学习编程作业答案(This is the answer of Andrew ng's deep learning curriculum in coursera.)
(系统自动生成,下载前可以参看下载内容)

下载文件列表

stanford_dl_ex-master
stanford_dl_ex-master\LICENSE
stanford_dl_ex-master\README.md
stanford_dl_ex-master\cnn
stanford_dl_ex-master\cnn\cnnConvolve.m
stanford_dl_ex-master\cnn\cnnCost.m
stanford_dl_ex-master\cnn\cnnExercise.m
stanford_dl_ex-master\cnn\cnnInitParams.m
stanford_dl_ex-master\cnn\cnnParamsToStack.m
stanford_dl_ex-master\cnn\cnnPool.m
stanford_dl_ex-master\cnn\cnnTrain.m
stanford_dl_ex-master\cnn\computeNumericalGradient.m
stanford_dl_ex-master\cnn\minFuncSGD.m
stanford_dl_ex-master\common
stanford_dl_ex-master\common\display_network.m
stanford_dl_ex-master\common\loadMNISTImages.m
stanford_dl_ex-master\common\loadMNISTLabels.m
stanford_dl_ex-master\common\minFunc_2012
stanford_dl_ex-master\common\minFunc_2012\autoDif
stanford_dl_ex-master\common\minFunc_2012\autoDif\autoGrad.m
stanford_dl_ex-master\common\minFunc_2012\autoDif\autoHess.m
stanford_dl_ex-master\common\minFunc_2012\autoDif\autoHv.m
stanford_dl_ex-master\common\minFunc_2012\autoDif\autoTensor.m
stanford_dl_ex-master\common\minFunc_2012\autoDif\derivativeCheck.m
stanford_dl_ex-master\common\minFunc_2012\autoDif\fastDerivativeCheck.m
stanford_dl_ex-master\common\minFunc_2012\example_derivativeCheck.m
stanford_dl_ex-master\common\minFunc_2012\example_minFunc.m
stanford_dl_ex-master\common\minFunc_2012\logisticExample
stanford_dl_ex-master\common\minFunc_2012\logisticExample\LogisticDiagPrecond.m
stanford_dl_ex-master\common\minFunc_2012\logisticExample\LogisticHv.m
stanford_dl_ex-master\common\minFunc_2012\logisticExample\LogisticLoss.m
stanford_dl_ex-master\common\minFunc_2012\logisticExample\example_minFunc_LR.m
stanford_dl_ex-master\common\minFunc_2012\logisticExample\mylogsumexp.m
stanford_dl_ex-master\common\minFunc_2012\mexAll.m
stanford_dl_ex-master\common\minFunc_2012\minFunc
stanford_dl_ex-master\common\minFunc_2012\minFunc\ArmijoBacktrack.m
stanford_dl_ex-master\common\minFunc_2012\minFunc\WolfeLineSearch.m
stanford_dl_ex-master\common\minFunc_2012\minFunc\compiled
stanford_dl_ex-master\common\minFunc_2012\minFunc\compiled\lbfgsAddC.mexa64
stanford_dl_ex-master\common\minFunc_2012\minFunc\compiled\lbfgsAddC.mexmaci64
stanford_dl_ex-master\common\minFunc_2012\minFunc\compiled\lbfgsAddC.mexw64
stanford_dl_ex-master\common\minFunc_2012\minFunc\compiled\lbfgsC.mexa64
stanford_dl_ex-master\common\minFunc_2012\minFunc\compiled\lbfgsC.mexglx
stanford_dl_ex-master\common\minFunc_2012\minFunc\compiled\lbfgsC.mexmac
stanford_dl_ex-master\common\minFunc_2012\minFunc\compiled\lbfgsC.mexmaci
stanford_dl_ex-master\common\minFunc_2012\minFunc\compiled\lbfgsC.mexmaci64
stanford_dl_ex-master\common\minFunc_2012\minFunc\compiled\lbfgsC.mexw32
stanford_dl_ex-master\common\minFunc_2012\minFunc\compiled\lbfgsC.mexw64
stanford_dl_ex-master\common\minFunc_2012\minFunc\compiled\lbfgsProdC.mexa64
stanford_dl_ex-master\common\minFunc_2012\minFunc\compiled\lbfgsProdC.mexmaci64
stanford_dl_ex-master\common\minFunc_2012\minFunc\compiled\lbfgsProdC.mexw64
stanford_dl_ex-master\common\minFunc_2012\minFunc\compiled\mcholC.mexa64
stanford_dl_ex-master\common\minFunc_2012\minFunc\compiled\mcholC.mexglx
stanford_dl_ex-master\common\minFunc_2012\minFunc\compiled\mcholC.mexmac
stanford_dl_ex-master\common\minFunc_2012\minFunc\compiled\mcholC.mexmaci64
stanford_dl_ex-master\common\minFunc_2012\minFunc\compiled\mcholC.mexw32
stanford_dl_ex-master\common\minFunc_2012\minFunc\compiled\mcholC.mexw64
stanford_dl_ex-master\common\minFunc_2012\minFunc\conjGrad.m
stanford_dl_ex-master\common\minFunc_2012\minFunc\dampedUpdate.m
stanford_dl_ex-master\common\minFunc_2012\minFunc\isLegal.m
stanford_dl_ex-master\common\minFunc_2012\minFunc\lbfgs.m
stanford_dl_ex-master\common\minFunc_2012\minFunc\lbfgsAdd.m
stanford_dl_ex-master\common\minFunc_2012\minFunc\lbfgsProd.m
stanford_dl_ex-master\common\minFunc_2012\minFunc\lbfgsUpdate.m
stanford_dl_ex-master\common\minFunc_2012\minFunc\mchol.m
stanford_dl_ex-master\common\minFunc_2012\minFunc\mcholinc.m
stanford_dl_ex-master\common\minFunc_2012\minFunc\mex
stanford_dl_ex-master\common\minFunc_2012\minFunc\mex\lbfgsAddC.c
stanford_dl_ex-master\common\minFunc_2012\minFunc\mex\lbfgsC.c
stanford_dl_ex-master\common\minFunc_2012\minFunc\mex\lbfgsProdC.c
stanford_dl_ex-master\common\minFunc_2012\minFunc\mex\mcholC.c
stanford_dl_ex-master\common\minFunc_2012\minFunc\minFunc.m
stanford_dl_ex-master\common\minFunc_2012\minFunc\minFunc_processInputOptions.m
stanford_dl_ex-master\common\minFunc_2012\minFunc\polyinterp.m
stanford_dl_ex-master\common\minFunc_2012\minFunc\precondDiag.m
stanford_dl_ex-master\common\minFunc_2012\minFunc\precondTriu.m
stanford_dl_ex-master\common\minFunc_2012\minFunc\precondTriuDiag.m
stanford_dl_ex-master\common\minFunc_2012\minFunc\taylorModel.m
stanford_dl_ex-master\common\minFunc_2012\rosenbrock.m
stanford_dl_ex-master\common\samplePatches.m
stanford_dl_ex-master\ex1
stanford_dl_ex-master\ex1\binary_classifier_accuracy.m
stanford_dl_ex-master\ex1\ex1_load_mnist.m
stanford_dl_ex-master\ex1\ex1a_linreg.m
stanford_dl_ex-master\ex1\ex1b_logreg.m
stanford_dl_ex-master\ex1\ex1c_softmax.m
stanford_dl_ex-master\ex1\grad_check.m
stanford_dl_ex-master\ex1\housing.data
stanford_dl_ex-master\ex1\linear_regression.m
stanford_dl_ex-master\ex1\linear_regression_vec.m
stanford_dl_ex-master\ex1\logistic_regression.m
stanford_dl_ex-master\ex1\logistic_regression_vec.m
stanford_dl_ex-master\ex1\multi_classifier_accuracy.m
stanford_dl_ex-master\ex1\sigmoid.m
stanford_dl_ex-master\ex1\softmax_regression_vec.m
stanford_dl_ex-master\multilayer_supervised
stanford_dl_ex-master\multilayer_supervised\initialize_weights.m
stanford_dl_ex-master\multilayer_supervised\load_preprocess_mnist.m
stanford_dl_ex-master\multilayer_supervised\params2stack.m
stanford_dl_ex-master\multilayer_supervised\run_train.m

相关说明

  • 本站资源为会员上传分享交流与学习,如有侵犯您的权益,请联系我们删除.
  • 搜珍网是交换下载平台,只提供交流渠道,下载内容来自于网络,除下载问题外,其它问题请自行百度。更多...
  • 本站已设置防盗链,请勿用迅雷、QQ旋风等下载软件下载资源,下载后用WinRAR最新版进行解压.
  • 如果您发现内容无法下载,请稍后再次尝试;或换浏览器;或者到消费记录里找到下载记录反馈给我们.
  • 下载后发现下载的内容跟说明不相乎,请到消费记录里找到下载记录反馈给我们,经确认后退回积分.
  • 如下载前有疑问,可以通过点击"提供者"的名字,查看对方的联系方式,联系对方咨询.

相关评论

暂无评论内容.

发表评论

*快速评论: 推荐 一般 有密码 和说明不符 不是源码或资料 文件不全 不能解压 纯粹是垃圾
*内  容:
*验 证 码:
搜珍网 www.dssz.com

浏览历史记录

关闭