文件名称:多项式加法 线性表
-
所属分类:
- 标签属性:
- 上传时间:2017-11-02
-
文件大小:1kb
-
已下载:1次
-
提 供 者:
-
相关连接:无下载说明:别用迅雷下载,失败请重下,重下不扣分!
介绍说明--下载内容来自于网络,使用问题请自行百度
我们经常遇到两多项式相加的情况,在这里,我们就需要用程序来模拟实现把两个多项式相加到一起。首先,我们会有两个多项式,每个多项式是独立的一行,每个多项式由系数、幂数这样的多个整数对来表示。
如多项式2x20- x17+ 5x9- 7x7+ 16x5+ 10x4 + 22x2- 15
对应的表达式为:2 20 -1 17 5 9 - 7 7 16 5 10 4 22 2 -15 0。
为了标记每行多项式的结束,在表达式后面加上了一个幂数为负数的整数对。
同时输入表达式的幂数大小顺序是随机的。
我们需要做的就是把所给的两个多项式加起来。(We often encounter the sum of two polynomials, where we need to use the program to simulate the realization of adding two polynomials together. First of all, we will have two polynomials, each polynomial is independent, each by polynomial coefficient, exponential number of integers such that the.
Such as 2x20- x17+ 5x9- 7x7+ 16x5+ polynomial 10x4 + 22x2- 15
The corresponding expression is: 220 -1 1759 - 77165104222 -15 0.
In order to mark the end of each line of the polynomial in the expression followed by a negative integer power of.
At the same time, enter the expression power of the size of the order is random.
We need to add up to two polynomial do is the.)
如多项式2x20- x17+ 5x9- 7x7+ 16x5+ 10x4 + 22x2- 15
对应的表达式为:2 20 -1 17 5 9 - 7 7 16 5 10 4 22 2 -15 0。
为了标记每行多项式的结束,在表达式后面加上了一个幂数为负数的整数对。
同时输入表达式的幂数大小顺序是随机的。
我们需要做的就是把所给的两个多项式加起来。(We often encounter the sum of two polynomials, where we need to use the program to simulate the realization of adding two polynomials together. First of all, we will have two polynomials, each polynomial is independent, each by polynomial coefficient, exponential number of integers such that the.
Such as 2x20- x17+ 5x9- 7x7+ 16x5+ polynomial 10x4 + 22x2- 15
The corresponding expression is: 220 -1 1759 - 77165104222 -15 0.
In order to mark the end of each line of the polynomial in the expression followed by a negative integer power of.
At the same time, enter the expression power of the size of the order is random.
We need to add up to two polynomial do is the.)
相关搜索: 多项式求值;线性表
(系统自动生成,下载前可以参看下载内容)
下载文件列表
多项式加法 线性表.txt
本网站为编程资源及源代码搜集、介绍的搜索网站,版权归原作者所有! 粤ICP备11031372号
1999-2046 搜珍网 All Rights Reserved.