文件名称:Deep Learning Based Communication Over the Air
-
所属分类:
- 标签属性:
- 上传时间:2018-05-12
-
文件大小:650kb
-
已下载:1次
-
提 供 者:
-
相关连接:无下载说明:别用迅雷下载,失败请重下,重下不扣分!
介绍说明--下载内容来自于网络,使用问题请自行百度
通信系统的端到端学习是a
引人入胜的新颖概念迄今为止仅被验证
模拟基于块的传输。它允许学习
发射机和接收机实现为深度神经网络
(NN),它们针对任意可区分的端到端进行了优化
performancemetric,例如块错误率(BLER)。在本文中,我们
证明无线传输是可能的:我们建造,
训练,并运行完整的通讯系统
的神经网络使用非同步的现成软件定义无线电
和开源深度学习软件库。(End-to-end learning of communications systems is a
fascinating novel concept that has so far only been validated by
simulations for block-based transmissions. It allows learning of
transmitter and receiver implementations as deep neural networks
(NNs) that are optimized for an arbitrary differentiable end-to-end
performancemetric, block error rate (BLER). In this paper, we
demonstrate that over-the-air transmissions are possible:We build,
train, and run a complete communications system solely composed
of NNs using unsynchronized off-the-shelf software-defined radios
and open-source deep learning software libraries.)
引人入胜的新颖概念迄今为止仅被验证
模拟基于块的传输。它允许学习
发射机和接收机实现为深度神经网络
(NN),它们针对任意可区分的端到端进行了优化
performancemetric,例如块错误率(BLER)。在本文中,我们
证明无线传输是可能的:我们建造,
训练,并运行完整的通讯系统
的神经网络使用非同步的现成软件定义无线电
和开源深度学习软件库。(End-to-end learning of communications systems is a
fascinating novel concept that has so far only been validated by
simulations for block-based transmissions. It allows learning of
transmitter and receiver implementations as deep neural networks
(NNs) that are optimized for an arbitrary differentiable end-to-end
performancemetric, block error rate (BLER). In this paper, we
demonstrate that over-the-air transmissions are possible:We build,
train, and run a complete communications system solely composed
of NNs using unsynchronized off-the-shelf software-defined radios
and open-source deep learning software libraries.)
相关搜索: deep learning
(系统自动生成,下载前可以参看下载内容)
下载文件列表
文件名 | 大小 | 更新时间 |
---|---|---|
Deep Learning Based Communication Over the Air.pdf | 897465 | 2018-04-23 |
本网站为编程资源及源代码搜集、介绍的搜索网站,版权归原作者所有! 粤ICP备11031372号
1999-2046 搜珍网 All Rights Reserved.