文件名称:utf8''Traffic-sign-recognition
介绍说明--下载内容来自于网络,使用问题请自行百度
项目基于Tensorflow进行实现。
#### 文件说明:
---
* input_data.py: 图片的输入
* traffic_sign_cnn.py: 用cnn进行训练分类
* testDemo.py: 用于测试已经训练出来的模型,输入单个图片输出结果,并分类到文件夹
#### 数据集说明:
---
* 这里是列表文本使用的是比利时的交通标志数据集,可以网上自己找,里面有62个分类。
#### 网络说明:
---
* 这里是列表文本这里是列表文本CNN网络包含两个卷积层,两个全连接层。识别率大概在95% 左右,可以自己根据需要自己修改参数提高识别率
另外,训练开始前需要先在项目目录下新建文件夹./log/train/,用来保存模型参数,数据集的目录结构大概是./data/train/00001(标签)/图片(The project is based on Tensorflow.
#### File Descr iption:
---
* input_data.py: input of the picture
* traffic_sign_cnn.py: Training classification with cnn
* testDemo.py: Used to test the trained model, enter the result of a single image output, and categorize it into a folder
#### Data Set Descr iption:
---
* Here is a list of texts using the Belgian traffic sign data set, which can be found online, with 62 categories.
#### Network Descr iption:
---
* Here is the list text Here is the list text The CNN network consists of two convolutional layers, two fully connected layers. The recognition rate is about 95%, you can modify the parameters by yourself to improve the recognition rate
In addition, before the start of training, you need to create a new folder in the project directory. / Log / train /, used to save the model parameters, the directory structure of the data set is probably ./data/train/00001 (tag) / picture)
#### 文件说明:
---
* input_data.py: 图片的输入
* traffic_sign_cnn.py: 用cnn进行训练分类
* testDemo.py: 用于测试已经训练出来的模型,输入单个图片输出结果,并分类到文件夹
#### 数据集说明:
---
* 这里是列表文本使用的是比利时的交通标志数据集,可以网上自己找,里面有62个分类。
#### 网络说明:
---
* 这里是列表文本这里是列表文本CNN网络包含两个卷积层,两个全连接层。识别率大概在95% 左右,可以自己根据需要自己修改参数提高识别率
另外,训练开始前需要先在项目目录下新建文件夹./log/train/,用来保存模型参数,数据集的目录结构大概是./data/train/00001(标签)/图片(The project is based on Tensorflow.
#### File Descr iption:
---
* input_data.py: input of the picture
* traffic_sign_cnn.py: Training classification with cnn
* testDemo.py: Used to test the trained model, enter the result of a single image output, and categorize it into a folder
#### Data Set Descr iption:
---
* Here is a list of texts using the Belgian traffic sign data set, which can be found online, with 62 categories.
#### Network Descr iption:
---
* Here is the list text Here is the list text The CNN network consists of two convolutional layers, two fully connected layers. The recognition rate is about 95%, you can modify the parameters by yourself to improve the recognition rate
In addition, before the start of training, you need to create a new folder in the project directory. / Log / train /, used to save the model parameters, the directory structure of the data set is probably ./data/train/00001 (tag) / picture)
相关搜索: CNN识别交通标识-TensorFlow
比利时数据集
(系统自动生成,下载前可以参看下载内容)
下载文件列表
文件名 | 大小 | 更新时间 |
---|---|---|
Traffic-sign-recognition | 0 | 2018-04-17 |
Traffic-sign-recognition\README.md | 973 | 2018-04-17 |
Traffic-sign-recognition\img_result | 0 | 2018-04-17 |
Traffic-sign-recognition\img_result\testDemo.png | 157367 | 2018-04-17 |
Traffic-sign-recognition\img_result\train_result.png | 323552 | 2018-04-17 |
Traffic-sign-recognition\input_data.py | 2929 | 2018-04-17 |
Traffic-sign-recognition\testDemo.py | 4358 | 2018-04-17 |
Traffic-sign-recognition\traffic_sign_cnn.py | 4743 | 2018-04-17 |
本网站为编程资源及源代码搜集、介绍的搜索网站,版权归原作者所有! 粤ICP备11031372号
1999-2046 搜珍网 All Rights Reserved.