文件名称:stanford-deep-learning-matlab-code
介绍说明--下载内容来自于网络,使用问题请自行百度
Stanford 大学的深度学习源代码,可用于模式识别和预测,比较稳定。(Stanford University's deep learning source code can be used for pattern recognition and prediction, and is relatively stable.)
相关搜索: deep learning matlab
(系统自动生成,下载前可以参看下载内容)
下载文件列表
cnnConvolve.m
cnnExercise.m
sparseAutoencoderLinearCost.m
softmaxExercise.m
checkStackedAECost.m
softmaxCost.m
softmaxPredict.m
sparseAutoencoderCost.m
stlExercise.m
feedForwardAutoencoder.m
loadMNISTImages.m
pca_gen.m
pca_2d.m
trainMNIST.m
train.m
sparseAutoencoderCost - 副本.m
computeNumericalGradient.m
sampleIMAGES.m
linearDecoderExercise.m
displayColorNetwork.m
stackedAEExercise.m
softmaxTrain.m
stackedAEPredict.m
stackedAECost.m
params2stack.m
stack2params.m
display_network.m
sampleIMAGESRAW.m
loadMNISTLabels.m
checkNumericalGradient.m
initializeParameters.m
cnnPool.m
cnnExercise.m
sparseAutoencoderLinearCost.m
softmaxExercise.m
checkStackedAECost.m
softmaxCost.m
softmaxPredict.m
sparseAutoencoderCost.m
stlExercise.m
feedForwardAutoencoder.m
loadMNISTImages.m
pca_gen.m
pca_2d.m
trainMNIST.m
train.m
sparseAutoencoderCost - 副本.m
computeNumericalGradient.m
sampleIMAGES.m
linearDecoderExercise.m
displayColorNetwork.m
stackedAEExercise.m
softmaxTrain.m
stackedAEPredict.m
stackedAECost.m
params2stack.m
stack2params.m
display_network.m
sampleIMAGESRAW.m
loadMNISTLabels.m
checkNumericalGradient.m
initializeParameters.m
cnnPool.m
本网站为编程资源及源代码搜集、介绍的搜索网站,版权归原作者所有! 粤ICP备11031372号
1999-2046 搜珍网 All Rights Reserved.