文件名称:Deep learning_CNN DBN RBM
介绍说明--下载内容来自于网络,使用问题请自行百度
运用深度学习模型实现图像的分类,主要包括卷积神经网络CNN和深信度网络DBN(Classification of images using deep learning model includes convolutional neural network CNN and belief network DBN.)
相关搜索: 深度学习CNN和DBN代码
(系统自动生成,下载前可以参看下载内容)
下载文件列表
文件名 | 大小 | 更新时间 |
---|---|---|
深度学习CNN%2BDBN%2BRBM\.travis.yml | 249 | 2015-12-01 |
深度学习CNN%2BDBN%2BRBM\CAE\caeapplygrads.m | 1219 | 2015-12-01 |
深度学习CNN%2BDBN%2BRBM\CAE\caebbp.m | 917 | 2015-12-01 |
深度学习CNN%2BDBN%2BRBM\CAE\caebp.m | 1011 | 2015-12-01 |
深度学习CNN%2BDBN%2BRBM\CAE\caedown.m | 259 | 2015-12-01 |
深度学习CNN%2BDBN%2BRBM\CAE\caeexamples.m | 754 | 2015-12-01 |
深度学习CNN%2BDBN%2BRBM\CAE\caenumgradcheck.m | 3618 | 2015-12-01 |
深度学习CNN%2BDBN%2BRBM\CAE\caesdlm.m | 845 | 2015-12-01 |
深度学习CNN%2BDBN%2BRBM\CAE\caetrain.m | 1148 | 2015-12-01 |
深度学习CNN%2BDBN%2BRBM\CAE\caeup.m | 489 | 2015-12-01 |
深度学习CNN%2BDBN%2BRBM\CAE\max3d.m | 173 | 2015-12-01 |
深度学习CNN%2BDBN%2BRBM\CAE\scaesetup.m | 1937 | 2015-12-01 |
深度学习CNN%2BDBN%2BRBM\CAE\scaetrain.m | 270 | 2015-12-01 |
深度学习CNN%2BDBN%2BRBM\CNN\cnnapplygrads.m | 575 | 2015-12-01 |
深度学习CNN%2BDBN%2BRBM\CNN\cnnbp.m | 2141 | 2015-12-01 |
深度学习CNN%2BDBN%2BRBM\CNN\cnnff.m | 1774 | 2015-12-01 |
深度学习CNN%2BDBN%2BRBM\CNN\cnnnumgradcheck.m | 3430 | 2015-12-01 |
深度学习CNN%2BDBN%2BRBM\CNN\cnnsetup.m | 2020 | 2015-12-01 |
深度学习CNN%2BDBN%2BRBM\CNN\cnntest.m | 193 | 2015-12-01 |
深度学习CNN%2BDBN%2BRBM\CNN\cnntrain.m | 845 | 2015-12-01 |
深度学习CNN%2BDBN%2BRBM\CONTRIBUTING.md | 544 | 2015-12-01 |
深度学习CNN%2BDBN%2BRBM\create_readme.sh | 744 | 2015-12-01 |
深度学习CNN%2BDBN%2BRBM\data\mnist_uint8.mat | 14735220 | 2015-12-01 |
深度学习CNN%2BDBN%2BRBM\DBN\dbnsetup.m | 557 | 2015-12-01 |
深度学习CNN%2BDBN%2BRBM\DBN\dbntrain.m | 232 | 2015-12-01 |
深度学习CNN%2BDBN%2BRBM\DBN\dbnunfoldtonn.m | 425 | 2015-12-01 |
深度学习CNN%2BDBN%2BRBM\DBN\rbmdown.m | 90 | 2015-12-01 |
深度学习CNN%2BDBN%2BRBM\DBN\rbmtrain.m | 1401 | 2015-12-01 |
深度学习CNN%2BDBN%2BRBM\DBN\rbmup.m | 89 | 2015-12-01 |
深度学习CNN%2BDBN%2BRBM\LICENSE | 1313 | 2015-12-01 |
深度学习CNN%2BDBN%2BRBM\NN\nnapplygrads.m | 628 | 2015-12-01 |
深度学习CNN%2BDBN%2BRBM\NN\nnbp.m | 1638 | 2015-12-01 |
深度学习CNN%2BDBN%2BRBM\NN\nnchecknumgrad.m | 704 | 2015-12-01 |
深度学习CNN%2BDBN%2BRBM\NN\nneval.m | 811 | 2015-12-01 |
深度学习CNN%2BDBN%2BRBM\NN\nnff.m | 1849 | 2015-12-01 |
深度学习CNN%2BDBN%2BRBM\NN\nnpredict.m | 192 | 2015-12-01 |
深度学习CNN%2BDBN%2BRBM\NN\nnsetup.m | 1844 | 2015-12-01 |
深度学习CNN%2BDBN%2BRBM\NN\nntest.m | 184 | 2015-12-01 |
深度学习CNN%2BDBN%2BRBM\NN\nntrain.m | 2414 | 2015-12-01 |
深度学习CNN%2BDBN%2BRBM\NN\nnupdatefigures.m | 1858 | 2015-12-01 |
深度学习CNN%2BDBN%2BRBM\README.md | 8861 | 2015-12-01 |
深度学习CNN%2BDBN%2BRBM\README_header.md | 2244 | 2015-12-01 |
深度学习CNN%2BDBN%2BRBM\REFS.md | 950 | 2015-12-01 |
深度学习CNN%2BDBN%2BRBM\SAE\saesetup.m | 132 | 2015-12-01 |
深度学习CNN%2BDBN%2BRBM\SAE\saetrain.m | 308 | 2015-12-01 |
深度学习CNN%2BDBN%2BRBM\tests\runalltests.m | 165 | 2015-12-01 |
深度学习CNN%2BDBN%2BRBM\tests\test_cnn_gradients_are_numerically_correct.m | 552 | 2015-12-01 |
深度学习CNN%2BDBN%2BRBM\tests\test_example_CNN.m | 981 | 2015-12-01 |
深度学习CNN%2BDBN%2BRBM\tests\test_example_DBN.m | 1031 | 2015-12-01 |
深度学习CNN%2BDBN%2BRBM\tests\test_example_NN.m | 3247 | 2015-12-01 |
深度学习CNN%2BDBN%2BRBM\tests\test_example_SAE.m | 934 | 2015-12-01 |
深度学习CNN%2BDBN%2BRBM\tests\test_nn_gradients_are_numerically_correct.m | 749 | 2015-12-01 |
深度学习CNN%2BDBN%2BRBM\util\allcomb.m | 2618 | 2015-12-01 |
深度学习CNN%2BDBN%2BRBM\util\expand.m | 1958 | 2015-12-01 |
深度学习CNN%2BDBN%2BRBM\util\flicker.m | 208 | 2015-12-01 |
深度学习CNN%2BDBN%2BRBM\util\flipall.m | 80 | 2015-12-01 |
深度学习CNN%2BDBN%2BRBM\util\fliplrf.m | 543 | 2015-12-01 |
深度学习CNN%2BDBN%2BRBM\util\flipudf.m | 576 | 2015-12-01 |
深度学习CNN%2BDBN%2BRBM\util\im2patches.m | 313 | 2015-12-01 |
深度学习CNN%2BDBN%2BRBM\util\isOctave.m | 108 | 2015-12-01 |
深度学习CNN%2BDBN%2BRBM\util\makeLMfilters.m | 1895 | 2015-12-01 |
深度学习CNN%2BDBN%2BRBM\util\myOctaveVersion.m | 169 | 2015-12-01 |
深度学习CNN%2BDBN%2BRBM\util\normalize.m | 97 | 2015-12-01 |
深度学习CNN%2BDBN%2BRBM\util\patches2im.m | 242 | 2015-12-01 |
深度学习CNN%2BDBN%2BRBM\util\randcorr.m | 283 | 2015-12-01 |
深度学习CNN%2BDBN%2BRBM\util\randp.m | 2083 | 2015-12-01 |
深度学习CNN%2BDBN%2BRBM\util\rnd.m | 49 | 2015-12-01 |
深度学习CNN%2BDBN%2BRBM\util\sigm.m | 48 | 2015-12-01 |
深度学习CNN%2BDBN%2BRBM\util\sigmrnd.m | 126 | 2015-12-01 |
深度学习CNN%2BDBN%2BRBM\util\softmax.m | 256 | 2015-12-01 |
深度学习CNN%2BDBN%2BRBM\util\tanh_opt.m | 54 | 2015-12-01 |
深度学习CNN%2BDBN%2BRBM\util\visualize.m | 1072 | 2015-12-01 |
深度学习CNN%2BDBN%2BRBM\util\whiten.m | 183 | 2015-12-01 |
深度学习CNN%2BDBN%2BRBM\util\zscore.m | 137 | 2015-12-01 |
深度学习CNN%2BDBN%2BRBM\CAE | 0 | 2015-12-01 |
深度学习CNN%2BDBN%2BRBM\CNN | 0 | 2015-12-01 |
深度学习CNN%2BDBN%2BRBM\data | 0 | 2015-12-01 |
深度学习CNN%2BDBN%2BRBM\DBN | 0 | 2015-12-01 |
深度学习CNN%2BDBN%2BRBM\NN | 0 | 2015-12-01 |
深度学习CNN%2BDBN%2BRBM\SAE | 0 | 2015-12-01 |
深度学习CNN%2BDBN%2BRBM\tests | 0 | 2015-12-01 |
深度学习CNN%2BDBN%2BRBM\util | 0 | 2015-12-01 |
深度学习CNN%2BDBN%2BRBM | 0 | 2015-12-01 |
本网站为编程资源及源代码搜集、介绍的搜索网站,版权归原作者所有! 粤ICP备11031372号
1999-2046 搜珍网 All Rights Reserved.