文件名称:Proximal_Policy_Optimization
介绍说明--下载内容来自于网络,使用问题请自行百度
强化学习可以按照方法学习策略来划分成基于值和基于策略两种。而在深度强化学习领域将深度学习与基于值的Q-Learning算法相结合产生了DQN算法,通过经验回放池与目标网络成功的将深度学习算法引入了强化学习算法。(Reinforcement learning can be divided into value-based learning and strategy based learning according to method learning strategies. In the field of deep reinforcement learning, dqn algorithm is generated by combining deep learning with value-based Q-learning algorithm. Through experience playback pool and target network, deep learning algorithm is successfully introduced into reinforcement learning algorithm.)
相关搜索: 强化学习
(系统自动生成,下载前可以参看下载内容)
下载文件列表
文件名 | 大小 | 更新时间 |
---|---|---|
Proximal_Policy_Optimization | 0 | 2019-04-08 |
Proximal_Policy_Optimization\discrete_DPPO.py | 8808 | 2019-01-21 |
Proximal_Policy_Optimization\DPPO.py | 8270 | 2019-01-21 |
Proximal_Policy_Optimization\simply_PPO.py | 6458 | 2019-01-21 |
本网站为编程资源及源代码搜集、介绍的搜索网站,版权归原作者所有! 粤ICP备11031372号
1999-2046 搜珍网 All Rights Reserved.