CDN加速镜像 | 设为首页 | 加入收藏夹
当前位置: 首页 资源下载 源码下载 Windows编程 界面编程

文件名称:load_RNN

  • 所属分类:
  • 标签属性:
  • 上传时间:
    2020-04-12
  • 文件大小:
    7.04mb
  • 已下载:
    0次
  • 提 供 者:
  • 相关连接:
  • 下载说明:
    别用迅雷下载,失败请重下,重下不扣分!

介绍说明--下载内容来自于网络,使用问题请自行百度

python 电力负荷预测,rnn版本,python环境(Python power load forecasting, RNN version, python environment)
相关搜索: python

(系统自动生成,下载前可以参看下载内容)

下载文件列表

文件名大小更新时间
load_RNN\draw_data.py 220 2020-01-01
load_RNN\Figure_1.png 262436 2020-01-01
load_RNN\jianmo.py 5485 2020-01-01
load_RNN\log_history\2.log\events.out.tfevents.1501239969.songling-14Z970-G-AA52C 40487138 2020-01-01
load_RNN\log_history\4.log\events.out.tfevents.1501239965.songling-14Z970-G-AA52C 15118217 2020-01-01
load_RNN\log_history\supervisor.log\events.out.tfevents.1501241437.songling-14Z970-G-AA52C 45075180 2020-01-01
load_RNN\log_history\supervisor.log\events.out.tfevents.1501244672.songling-14Z970-G-AA52C 9007093 2020-01-01
load_RNN\log_history\supervisor.log\events.out.tfevents.1501244808.songling-14Z970-G-AA52C 16140864 2020-01-01
load_RNN\normalize.py 1471 2020-01-01
load_RNN\output\steps=1000-MAPE=0.0561.csv 18230 2020-01-01
load_RNN\output\steps=1000-MAPE=0.0580.csv 18231 2020-01-01
load_RNN\output\steps=1000-MAPE=0.0589.csv 18232 2020-01-01
load_RNN\output\steps=10000-MAPE=0.0449.csv 18221 2020-01-01
load_RNN\output\steps=10000-MAPE=0.0529 18227 2020-01-01
load_RNN\output\steps=10000-MAPE=0.0542.csv 18223 2020-01-01
load_RNN\output\steps=10000-MAPE=0.0555.csv 18238 2020-01-01
load_RNN\output\steps=10500-MAPE=0.0462.csv 18235 2020-01-01
load_RNN\output\steps=10500-MAPE=0.0566.csv 18240 2020-01-01
load_RNN\output\steps=11000-MAPE=0.0465.csv 18238 2020-01-01
load_RNN\output\steps=11000-MAPE=0.0564.csv 18227 2020-01-01
load_RNN\output\steps=11500-MAPE=0.0502.csv 18233 2020-01-01
load_RNN\output\steps=11500-MAPE=0.0550.csv 18231 2020-01-01
load_RNN\output\steps=12000-MAPE=0.0495.csv 18233 2020-01-01
load_RNN\output\steps=12000-MAPE=0.0535.csv 18218 2020-01-01
load_RNN\output\steps=12500-MAPE=0.0514.csv 18236 2020-01-01
load_RNN\output\steps=12500-MAPE=0.0578.csv 18239 2020-01-01
load_RNN\output\steps=13000-MAPE=0.0531.csv 18223 2020-01-01
load_RNN\output\steps=13000-MAPE=0.0557.csv 18233 2020-01-01
load_RNN\output\steps=13500-MAPE=0.0519.csv 18221 2020-01-01
load_RNN\output\steps=13500-MAPE=0.0594.csv 18241 2020-01-01
load_RNN\output\steps=14000-MAPE=0.0529.csv 18233 2020-01-01
load_RNN\output\steps=14000-MAPE=0.0587.csv 18216 2020-01-01
load_RNN\output\steps=14500-MAPE=0.0538.csv 18255 2020-01-01
load_RNN\output\steps=1500-MAPE=0.0508.csv 18225 2020-01-01
load_RNN\output\steps=1500-MAPE=0.0523.csv 18246 2020-01-01
load_RNN\output\steps=1500-MAPE=0.0524.csv 18227 2020-01-01
load_RNN\output\steps=1500-MAPE=0.0530.csv 18215 2020-01-01
load_RNN\output\steps=1500-MAPE=0.0539.csv 18233 2020-01-01
load_RNN\output\steps=1500-MAPE=0.0567.csv 18213 2020-01-01
load_RNN\output\steps=1500-MAPE=0.0569.csv 18240 2020-01-01
load_RNN\output\steps=15000-MAPE=0.0520.csv 18227 2020-01-01
load_RNN\output\steps=15000-MAPE=0.0578.csv 18226 2020-01-01
load_RNN\output\steps=15500-MAPE=0.0549.csv 18240 2020-01-01
load_RNN\output\steps=15500-MAPE=0.0571.csv 18248 2020-01-01
load_RNN\output\steps=16000-MAPE=0.0536.csv 18236 2020-01-01
load_RNN\output\steps=16000-MAPE=0.0563.csv 18236 2020-01-01
load_RNN\output\steps=16500-MAPE=0.0501.csv 18240 2020-01-01
load_RNN\output\steps=16500-MAPE=0.0550.csv 18245 2020-01-01
load_RNN\output\steps=17000-MAPE=0.0503.csv 18232 2020-01-01
load_RNN\output\steps=17000-MAPE=0.0547.csv 18218 2020-01-01
load_RNN\output\steps=17500-MAPE=0.0493.csv 18221 2020-01-01
load_RNN\output\steps=17500-MAPE=0.0567.csv 18238 2020-01-01
load_RNN\output\steps=18000-MAPE=0.0479.csv 18239 2020-01-01
load_RNN\output\steps=18000-MAPE=0.0556.csv 18227 2020-01-01
load_RNN\output\steps=18500-MAPE=0.0501.csv 18238 2020-01-01
load_RNN\output\steps=18500-MAPE=0.0553.csv 18240 2020-01-01
load_RNN\output\steps=19000-MAPE=0.0484.csv 18235 2020-01-01
load_RNN\output\steps=19000-MAPE=0.0547.csv 18228 2020-01-01
load_RNN\output\steps=19500-MAPE=0.0502.csv 18237 2020-01-01
load_RNN\output\steps=19500-MAPE=0.0549.csv 18225 2020-01-01
load_RNN\output\steps=2000-MAPE=0.0463.csv 18226 2020-01-01
load_RNN\output\steps=2000-MAPE=0.0487.csv 18229 2020-01-01
load_RNN\output\steps=2000-MAPE=0.0494.csv 18221 2020-01-01
load_RNN\output\steps=2000-MAPE=0.0522.csv 18243 2020-01-01
load_RNN\output\steps=2000-MAPE=0.0534.csv 18228 2020-01-01
load_RNN\output\steps=2000-MAPE=0.0564.csv 18232 2020-01-01
load_RNN\output\steps=2000-MAPE=0.0584.csv 18237 2020-01-01
load_RNN\output\steps=2000-MAPE=0.0589.csv 18237 2020-01-01
load_RNN\output\steps=20000-MAPE=0.0526.csv 18213 2020-01-01
load_RNN\output\steps=2500-MAPE=0.0490.csv 18240 2020-01-01
load_RNN\output\steps=2500-MAPE=0.0517.csv 18232 2020-01-01
load_RNN\output\steps=2500-MAPE=0.0524.csv 18223 2020-01-01
load_RNN\output\steps=2500-MAPE=0.0528.csv 18219 2020-01-01
load_RNN\output\steps=2500-MAPE=0.0557.csv 18240 2020-01-01
load_RNN\output\steps=3000-MAPE=0.0497.csv 18226 2020-01-01
load_RNN\output\steps=3000-MAPE=0.0506.csv 18223 2020-01-01
load_RNN\output\steps=3000-MAPE=0.0507.csv 18224 2020-01-01
load_RNN\output\steps=3000-MAPE=0.0522.csv 18229 2020-01-01
load_RNN\output\steps=3000-MAPE=0.0523.csv 18226 2020-01-01
load_RNN\output\steps=3000-MAPE=0.0528.csv 18240 2020-01-01
load_RNN\output\steps=3000-MAPE=0.0531.csv 18232 2020-01-01
load_RNN\output\steps=3000-MAPE=0.0541 18234 2020-01-01
load_RNN\output\steps=3000-MAPE=0.0541.csv 18225 2020-01-01
load_RNN\output\steps=3000-MAPE=0.0549.csv 18223 2020-01-01
load_RNN\output\steps=3000-MAPE=0.0593.csv 18237 2020-01-01
load_RNN\output\steps=3500-MAPE=0.0450.csv 18221 2020-01-01
load_RNN\output\steps=3500-MAPE=0.0499.csv 18234 2020-01-01
load_RNN\output\steps=3500-MAPE=0.0502.csv 18240 2020-01-01
load_RNN\output\steps=3500-MAPE=0.0504.csv 18228 2020-01-01
load_RNN\output\steps=3500-MAPE=0.0508.csv 18231 2020-01-01
load_RNN\output\steps=3500-MAPE=0.0509.csv 18221 2020-01-01
load_RNN\output\steps=3500-MAPE=0.0528.csv 18230 2020-01-01
load_RNN\output\steps=3500-MAPE=0.0533 18237 2020-01-01
load_RNN\output\steps=3500-MAPE=0.0550.csv 18238 2020-01-01
load_RNN\output\steps=3500-MAPE=0.0556.csv 18217 2020-01-01
load_RNN\output\steps=4000-MAPE=0.0455.csv 18230 2020-01-01
load_RNN\output\steps=4000-MAPE=0.0466.csv 18235 2020-01-01
load_RNN\output\steps=4000-MAPE=0.0496.csv 18245 2020-01-01
load_RNN\output\steps=4000-MAPE=0.0500.csv 18229 2020-01-01
load_RNN\output\steps=4000-MAPE=0.0520.csv 18206 2020-01-01

相关说明

  • 本站资源为会员上传分享交流与学习,如有侵犯您的权益,请联系我们删除.
  • 搜珍网是交换下载平台,只提供交流渠道,下载内容来自于网络,除下载问题外,其它问题请自行百度。更多...
  • 本站已设置防盗链,请勿用迅雷、QQ旋风等下载软件下载资源,下载后用WinRAR最新版进行解压.
  • 如果您发现内容无法下载,请稍后再次尝试;或换浏览器;或者到消费记录里找到下载记录反馈给我们.
  • 下载后发现下载的内容跟说明不相乎,请到消费记录里找到下载记录反馈给我们,经确认后退回积分.
  • 如下载前有疑问,可以通过点击"提供者"的名字,查看对方的联系方式,联系对方咨询.

相关评论

暂无评论内容.

发表评论

*快速评论: 推荐 一般 有密码 和说明不符 不是源码或资料 文件不全 不能解压 纯粹是垃圾
*内  容:
*验 证 码:
搜珍网 www.dssz.com