文件名称:BNL.zip
介绍说明--下载内容来自于网络,使用问题请自行百度
The BNL toolbox is a set of Matlab functions for defining and estimating the
parameters of a Bayesian network for discrete variables in which the conditional
probability tables are specified by logistic regression models. Logistic regression can be
used to incorporate restrictions on the conditional probabilities and to account for the
effect of covariates. Nominal variables are modeled with multinomial logistic regression,
whereas the category probabilities of ordered variables are modeled through a cumulative
or adjacent-categories response function. Variables can be observed, partially observed,
or hidden.,The BNL toolbox is a set of Matlab functions for defining and estimating the
parameters of a Bayesian network for discrete variables in which the conditional
probability tables are specified by logistic regression models. Logistic regression can be
used to incorporate restrictions on the conditional probabilities and to account for the
effect of covariates. Nominal variables are modeled with multinomial logistic regression,
whereas the category probabilities of ordered variables are modeled through a cumulative
or adjacent-categories response function. Variables can be observed, partially observed,
or hidden.
parameters of a Bayesian network for discrete variables in which the conditional
probability tables are specified by logistic regression models. Logistic regression can be
used to incorporate restrictions on the conditional probabilities and to account for the
effect of covariates. Nominal variables are modeled with multinomial logistic regression,
whereas the category probabilities of ordered variables are modeled through a cumulative
or adjacent-categories response function. Variables can be observed, partially observed,
or hidden.,The BNL toolbox is a set of Matlab functions for defining and estimating the
parameters of a Bayesian network for discrete variables in which the conditional
probability tables are specified by logistic regression models. Logistic regression can be
used to incorporate restrictions on the conditional probabilities and to account for the
effect of covariates. Nominal variables are modeled with multinomial logistic regression,
whereas the category probabilities of ordered variables are modeled through a cumulative
or adjacent-categories response function. Variables can be observed, partially observed,
or hidden.
(系统自动生成,下载前可以参看下载内容)
下载文件列表
additional/
additional/adj_logistic.m
additional/adj_logit.m
additional/cum_logistic.m
additional/cum_logit.m
additional/deriv_adj_logist.m
additional/deriv_cum_logist.m
additional/deriv_multinom_logist.m
additional/dummycode.m
additional/infocrit.m
additional/multinom_logistic.m
additional/multinom_logit.m
additional/multinornd.m
additional/randvector.m
BNL manual.pdf
constructbnt/
constructbnt/franks_from_BNT.m
constructbnt/franks_mk_adj_mat.m
constructbnt/inv_order.m
constructbnt/link_pot_to_CPT.m
designmatrices/
designmatrices/check_order.m
designmatrices/construct_design_mats.m
designmatrices/construct_lin_pred.m
designmatrices/construct_predmat.m
designmatrices/cov_into_design.m
designmatrices/define_lin_pred_struct_cov_default.m
designmatrices/define_lin_pred_struct_cov_main.m
designmatrices/define_lin_pred_struct_main.asv
designmatrices/define_lin_pred_struct_main.m
designmatrices/define_lin_pred_struct_sat.m
estimation/
estimation/compute_JPTs.m
estimation/compute_suff_stats.m
estimation/compute_suff_stats_ind.m
estimation/construct_bigCPTs.m
estimation/construct_equiv_class_CPT.m
estimation/construct_sCPT.m
estimation/EM_iteration.m
estimation/find_max_configs.asv
estimation/find_max_configs.m
estimation/fit_multinom_logistic.m
estimation/fit_ordered_logistic.m
estimation/gen_random_start.m
estimation/loglik.m
estimation/max_marginalization.m
estimation/num_infomatrix_anal_score.m
estimation/score.m
estimation/update_parms.m
example_models/
example_models/alarm with restrictions/
example_models/alarm with restrictions/comparemodels.m
example_models/alarm with restrictions/construct_alarm.m
example_models/alarm with restrictions/fit_model_cumul.m
example_models/alarm with restrictions/fit_model_cumul50.asv
example_models/alarm with restrictions/fit_model_cumul50.m
example_models/alarm with restrictions/fit_model_cumul50_test.asv
example_models/alarm with restrictions/fit_model_cumul50_test.m
example_models/alarm with restrictions/fit_model_cumul_test.m
example_models/alarm with restrictions/fit_model_norest.asv
example_models/alarm with restrictions/fit_model_norest.m
example_models/alarm with restrictions/fit_model_norest_test.asv
example_models/alarm with restrictions/fit_model_norest_test.m
example_models/alarm with restrictions/gen_alarm_start.asv
example_models/alarm with restrictions/gen_alarm_start.m
example_models/alarm with restrictions/simulate50_50.m
example_models/anorex/
example_models/anorex/construct_bnet_hier_hmm.m
example_models/anorex/construct_bnet_hmm.m
example_models/anorex/construct_equiv_hier_hmm.m
example_models/anorex/define_lin_pred_struct_hier_hmm_main.m
example_models/anorex/equiv_classes_hier_hmm.m
example_models/anorex/equiv_classes_hmm.m
example_models/anorex/fit_model_hier_hmm.m
example_models/anorex/fit_model_hier_hmm_maineffects.m
example_models/anorex/fit_model_hier_hmm_time.m
example_models/anorex/fit_model_hier_hmm_timesq.m
example_models/anorex/fit_model_hmm.m
example_models/anorex/link_covariates_to_nodes_hier_hmm_time.m
example_models/anorex/link_covariates_to_nodes_hier_hmm_timesq.m
example_models/anorex/loadtime.m
example_models/anorex/loadtimesamplingdata.m
example_models/brain/
example_models/brain/construct_bnet_hmm_theta.m
example_models/brain/fit_modelbrain_domain_theta.m
example_models/brain/fit_modelbrain_domain_theta_treat.m
example_models/brain/fit_modelbrain_hmm.m
example_models/brain/fit_modelbrain_hmm_domain.m
example_models/hmm/
example_models/hmm/construct_bnet_hmm.m
example_models/hmm/fit_model_hmm.m
example_models/hmm/generate_hmm_data.m
example_models/hmm/hmm.xls
example_models/mixed_lltm/
example_models/mixed_lltm/construct_bnet_mixlltm.m
example_models/mixed_lltm/fit_model_mixed_lltm.m
gausskwad/
gausskwad/herzo.m
generate_data/
generate_data/generate_bnet_data.m
messagepassing/
messagepassing/franksnormalize.m
messagepassing/franks_init_pot.m
messagepassing/franks_marginalize_pot.m
messagepassing/franks_max_marginalize_pot.m
messagepassing/max_propagate_messages.m
messagepassing/pot_division.m
messagepassing/propagate_messages.m
messagepassing/replicate_pot.m
messagepassing/select_max_config.m
additional/adj_logistic.m
additional/adj_logit.m
additional/cum_logistic.m
additional/cum_logit.m
additional/deriv_adj_logist.m
additional/deriv_cum_logist.m
additional/deriv_multinom_logist.m
additional/dummycode.m
additional/infocrit.m
additional/multinom_logistic.m
additional/multinom_logit.m
additional/multinornd.m
additional/randvector.m
BNL manual.pdf
constructbnt/
constructbnt/franks_from_BNT.m
constructbnt/franks_mk_adj_mat.m
constructbnt/inv_order.m
constructbnt/link_pot_to_CPT.m
designmatrices/
designmatrices/check_order.m
designmatrices/construct_design_mats.m
designmatrices/construct_lin_pred.m
designmatrices/construct_predmat.m
designmatrices/cov_into_design.m
designmatrices/define_lin_pred_struct_cov_default.m
designmatrices/define_lin_pred_struct_cov_main.m
designmatrices/define_lin_pred_struct_main.asv
designmatrices/define_lin_pred_struct_main.m
designmatrices/define_lin_pred_struct_sat.m
estimation/
estimation/compute_JPTs.m
estimation/compute_suff_stats.m
estimation/compute_suff_stats_ind.m
estimation/construct_bigCPTs.m
estimation/construct_equiv_class_CPT.m
estimation/construct_sCPT.m
estimation/EM_iteration.m
estimation/find_max_configs.asv
estimation/find_max_configs.m
estimation/fit_multinom_logistic.m
estimation/fit_ordered_logistic.m
estimation/gen_random_start.m
estimation/loglik.m
estimation/max_marginalization.m
estimation/num_infomatrix_anal_score.m
estimation/score.m
estimation/update_parms.m
example_models/
example_models/alarm with restrictions/
example_models/alarm with restrictions/comparemodels.m
example_models/alarm with restrictions/construct_alarm.m
example_models/alarm with restrictions/fit_model_cumul.m
example_models/alarm with restrictions/fit_model_cumul50.asv
example_models/alarm with restrictions/fit_model_cumul50.m
example_models/alarm with restrictions/fit_model_cumul50_test.asv
example_models/alarm with restrictions/fit_model_cumul50_test.m
example_models/alarm with restrictions/fit_model_cumul_test.m
example_models/alarm with restrictions/fit_model_norest.asv
example_models/alarm with restrictions/fit_model_norest.m
example_models/alarm with restrictions/fit_model_norest_test.asv
example_models/alarm with restrictions/fit_model_norest_test.m
example_models/alarm with restrictions/gen_alarm_start.asv
example_models/alarm with restrictions/gen_alarm_start.m
example_models/alarm with restrictions/simulate50_50.m
example_models/anorex/
example_models/anorex/construct_bnet_hier_hmm.m
example_models/anorex/construct_bnet_hmm.m
example_models/anorex/construct_equiv_hier_hmm.m
example_models/anorex/define_lin_pred_struct_hier_hmm_main.m
example_models/anorex/equiv_classes_hier_hmm.m
example_models/anorex/equiv_classes_hmm.m
example_models/anorex/fit_model_hier_hmm.m
example_models/anorex/fit_model_hier_hmm_maineffects.m
example_models/anorex/fit_model_hier_hmm_time.m
example_models/anorex/fit_model_hier_hmm_timesq.m
example_models/anorex/fit_model_hmm.m
example_models/anorex/link_covariates_to_nodes_hier_hmm_time.m
example_models/anorex/link_covariates_to_nodes_hier_hmm_timesq.m
example_models/anorex/loadtime.m
example_models/anorex/loadtimesamplingdata.m
example_models/brain/
example_models/brain/construct_bnet_hmm_theta.m
example_models/brain/fit_modelbrain_domain_theta.m
example_models/brain/fit_modelbrain_domain_theta_treat.m
example_models/brain/fit_modelbrain_hmm.m
example_models/brain/fit_modelbrain_hmm_domain.m
example_models/hmm/
example_models/hmm/construct_bnet_hmm.m
example_models/hmm/fit_model_hmm.m
example_models/hmm/generate_hmm_data.m
example_models/hmm/hmm.xls
example_models/mixed_lltm/
example_models/mixed_lltm/construct_bnet_mixlltm.m
example_models/mixed_lltm/fit_model_mixed_lltm.m
gausskwad/
gausskwad/herzo.m
generate_data/
generate_data/generate_bnet_data.m
messagepassing/
messagepassing/franksnormalize.m
messagepassing/franks_init_pot.m
messagepassing/franks_marginalize_pot.m
messagepassing/franks_max_marginalize_pot.m
messagepassing/max_propagate_messages.m
messagepassing/pot_division.m
messagepassing/propagate_messages.m
messagepassing/replicate_pot.m
messagepassing/select_max_config.m
本网站为编程资源及源代码搜集、介绍的搜索网站,版权归原作者所有! 粤ICP备11031372号
1999-2046 搜珍网 All Rights Reserved.