文件名称:Researchontheshapefeatureextractionandrecognition.
-
所属分类:
- 标签属性:
- 上传时间:2012-11-16
-
文件大小:271.69kb
-
已下载:0次
-
提 供 者:
-
相关连接:无下载说明:别用迅雷下载,失败请重下,重下不扣分!
介绍说明--下载内容来自于网络,使用问题请自行百度
主分量分析(PCA ) 是统计学中分析数据的一种有效的方法, 可以将数据从高维数据空间变换到低维特征空间, 因而
可以用于数据的特征提取及压缩等方面。在该文的形状识别系统中, 用PCA 法提取图像的形状特征, 能够较好地满足识别
层的输入要求。在识别层研究了3 种识别方法: 最近邻法则、BP 网络及协同神经网络方法, 均取得了满意的实验效果。-Principal component analysis (PCA) is a statistical analysis of data in an effective method to data from high dimensional data space transformation to the low-dimensional feature space, which can be used for data feature extraction and compression and so on. In this paper, the shape recognition system using PCA extraction of the shape of image features, can be used to satisfy the identification requirements of the input layer. In the recognition layer studied three kinds of identification methods: nearest neighbor rule, BP network and the synergetic neural network methods, have achieved a satisfactory experiment results.
可以用于数据的特征提取及压缩等方面。在该文的形状识别系统中, 用PCA 法提取图像的形状特征, 能够较好地满足识别
层的输入要求。在识别层研究了3 种识别方法: 最近邻法则、BP 网络及协同神经网络方法, 均取得了满意的实验效果。-Principal component analysis (PCA) is a statistical analysis of data in an effective method to data from high dimensional data space transformation to the low-dimensional feature space, which can be used for data feature extraction and compression and so on. In this paper, the shape recognition system using PCA extraction of the shape of image features, can be used to satisfy the identification requirements of the input layer. In the recognition layer studied three kinds of identification methods: nearest neighbor rule, BP network and the synergetic neural network methods, have achieved a satisfactory experiment results.
(系统自动生成,下载前可以参看下载内容)
下载文件列表
Researchontheshapefeatureextractionandrecognition.pdf
本网站为编程资源及源代码搜集、介绍的搜索网站,版权归原作者所有! 粤ICP备11031372号
1999-2046 搜珍网 All Rights Reserved.