文件名称:marq
介绍说明--下载内容来自于网络,使用问题请自行百度
% Train a two layer neural network with the Levenberg-Marquardt
% method.
%
% If desired, it is possible to use regularization by
% weight decay. Also pruned (ie. not fully connected) networks can
% be trained.
%
% Given a set of corresponding input-output pairs and an initial
% network,
% [W1,W2,critvec,iteration,lambda]=marq(NetDef,W1,W2,PHI,Y,trparms)
% trains the network with the Levenberg-Marquardt method.
%
% The activation functions can be either linear or tanh. The
% network architecture is defined by the matrix NetDef which
% has two rows. The first row specifies the hidden layer and the
% second row specifies the output layer.- Train a two layer neural network with the Levenberg-Marquardt method. If desired, it is possible to use regularization by weight decay. Also pruned (ie. not fully connected) networks can be trained. Given a set of corresponding input-output pairs and an initial network, [W1, W2, critvec, iteration, lambda] = marq (NetDef, W1, W2, PHI, Y, trparms) trains the network with the Levenberg-Marquardt method . The activation functions can be either linear or tanh. The network architecture is defined by the matrix NetDef which has two rows. The first row specifies the hidden layer and the second row specifies the output layer.
相关搜索: lambda iteration method
Levenberg marquardt
levenberg
ie
marquardt
Marq
Levenberg- Marguardt matlab
lambda iteration
weight
(系统自动生成,下载前可以参看下载内容)
下载文件列表
marq.m
本网站为编程资源及源代码搜集、介绍的搜索网站,版权归原作者所有! 粤ICP备11031372号
1999-2046 搜珍网 All Rights Reserved.