文件名称:selfAffinity
介绍说明--下载内容来自于网络,使用问题请自行百度
AP是在数据点的相似度矩阵的基础上进行聚类.对于规模很大的数据集,AP算法是一种快速、有效的聚类方法,这是其他传统的聚类算法所不能及的,-A semi-supervised clustering method based on affinity propagation (AP) algorithm is proposed in this paper. AP takes as input measures of similarity between pairs of data points. AP is an efficient and fast clustering algorithm for large dataset compared with the existing clustering algorithms, such as K-center clustering. But for the datasets with complex cluster structures, it cannot produce good clustering results. It can improve the clustering performance of AP by using the priori known labeled data or pairwise constraints to adjust the similarity matrix. Experimental results show that such method indeed reaches its goal for complex datasets, and this method outperforms the comparative methods when there are a large number of pairwise constraints.
相关搜索: affinity propagation
相似
(系统自动生成,下载前可以参看下载内容)
下载文件列表
基于近邻传播算法的半监督聚类.pdf
本网站为编程资源及源代码搜集、介绍的搜索网站,版权归原作者所有! 粤ICP备11031372号
1999-2046 搜珍网 All Rights Reserved.