文件名称:acm_code
-
所属分类:
- 标签属性:
- 上传时间:2012-11-16
-
文件大小:802.1kb
-
已下载:0次
-
提 供 者:
-
相关连接:无下载说明:别用迅雷下载,失败请重下,重下不扣分!
介绍说明--下载内容来自于网络,使用问题请自行百度
ACM资料大集合,超多关于ACM的资料,全是很经典的,要是把这个全搞定,肯定是金奖!-ACM large collection of information, ultra more information on ACM, the whole is very classic, and if to get the whole is definitely gold!
(系统自动生成,下载前可以参看下载内容)
下载文件列表
文件名 | 大小 | 更新时间 |
---|---|---|
acm_code/Parencodings答案.doc | ||
acm_code/答案Yellow Code.doc | ||
acm_code/答案Geometry Made Simple .doc | ||
acm_code/有答案Immediate Decodability.doc | ||
acm_code/有答案So You Want to Be a (2^n)-Aire.doc | ||
acm_code/Magic Bitstrings有答案.doc | ||
acm_code/GG_rr_sg/update.log | ||
acm_code/GG_rr_sg/列表.txt | ||
acm_code/GG_rr_sg/结构/堆(binary).txt | ||
acm_code/GG_rr_sg/结构/堆(mapped).txt | ||
acm_code/GG_rr_sg/结构/子段和.txt | ||
acm_code/GG_rr_sg/结构/子阵和.txt | ||
acm_code/GG_rr_sg/结构/并查集.txt | ||
acm_code/GG_rr_sg/结构/并查集扩展(friend_enemy).txt | ||
acm_code/GG_rr_sg/结构/矩形切割.txt | ||
acm_code/GG_rr_sg/结构/线段树.txt | ||
acm_code/GG_rr_sg/结构/线段树应用.txt | ||
acm_code/GG_rr_sg/结构/线段树扩展.txt | ||
acm_code/GG_rr_sg/结构 | ||
acm_code/GG_rr_sg/组合/字典序全排列.txt | ||
acm_code/GG_rr_sg/组合/字典序组合.txt | ||
acm_code/GG_rr_sg/组合/排列组合生成.txt | ||
acm_code/GG_rr_sg/组合/生成gray码.txt | ||
acm_code/GG_rr_sg/组合/组合公式.txt | ||
acm_code/GG_rr_sg/组合/置换(polya).txt | ||
acm_code/GG_rr_sg/组合 | ||
acm_code/GG_rr_sg/数论/最大公约数欧拉函数.txt | ||
acm_code/GG_rr_sg/数论/模线性方程(组).txt | ||
acm_code/GG_rr_sg/数论/素数表.txt | ||
acm_code/GG_rr_sg/数论/素数随机判定(miller_rabin).txt | ||
acm_code/GG_rr_sg/数论/质因数分解.txt | ||
acm_code/GG_rr_sg/数论/阶乘最后非零位.txt | ||
acm_code/GG_rr_sg/数论 | ||
acm_code/GG_rr_sg/数值计算/周期性方程(追赶法).txt | ||
acm_code/GG_rr_sg/数值计算/多项式求根(牛顿法).txt | ||
acm_code/GG_rr_sg/数值计算/定积分计算(Romberg).txt | ||
acm_code/GG_rr_sg/数值计算 | ||
acm_code/GG_rr_sg/应用/joseph.txt | ||
acm_code/GG_rr_sg/应用/N皇后构造解.txt | ||
acm_code/GG_rr_sg/应用/字符串最小表示.txt | ||
acm_code/GG_rr_sg/应用/布尔母函数.txt | ||
acm_code/GG_rr_sg/应用/幻方构造.txt | ||
acm_code/GG_rr_sg/应用/最大子串匹配.txt | ||
acm_code/GG_rr_sg/应用/最大子段和.txt | ||
acm_code/GG_rr_sg/应用/最大子阵和.txt | ||
acm_code/GG_rr_sg/应用/最长公共单调子序列.txt | ||
acm_code/GG_rr_sg/应用/最长子序列.txt | ||
acm_code/GG_rr_sg/应用/模式匹配(kmp).txt | ||
acm_code/GG_rr_sg/应用/第k元素.txt | ||
acm_code/GG_rr_sg/应用/逆序对数.txt | ||
acm_code/GG_rr_sg/应用 | ||
acm_code/GG_rr_sg/图论_连通性/无向图关键点(dfs邻接阵形式).txt | ||
acm_code/GG_rr_sg/图论_连通性/无向图关键边(dfs邻接阵形式).txt | ||
acm_code/GG_rr_sg/图论_连通性/无向图块(bfs邻接阵形式).txt | ||
acm_code/GG_rr_sg/图论_连通性/无向图连通分支(bfs邻接阵形式).txt | ||
acm_code/GG_rr_sg/图论_连通性/无向图连通分支(dfs邻接阵形式).txt | ||
acm_code/GG_rr_sg/图论_连通性/有向图强连通分支(bfs邻接阵形式).txt | ||
acm_code/GG_rr_sg/图论_连通性/有向图强连通分支(dfs邻接阵形式).txt | ||
acm_code/GG_rr_sg/图论_连通性/有向图最小点基(邻接阵形式).txt | ||
acm_code/GG_rr_sg/图论_连通性 | ||
acm_code/GG_rr_sg/图论_网络流/上下界最大流(邻接表形式).txt | ||
acm_code/GG_rr_sg/图论_网络流/上下界最大流(邻接阵形式).txt | ||
acm_code/GG_rr_sg/图论_网络流/上下界最小流(邻接表形式).txt | ||
acm_code/GG_rr_sg/图论_网络流/上下界最小流(邻接阵形式).txt | ||
acm_code/GG_rr_sg/图论_网络流/最大流(邻接表形式).txt | ||
acm_code/GG_rr_sg/图论_网络流/最大流(邻接表形式 | 邻接阵接口).txt | |
acm_code/GG_rr_sg/图论_网络流/最大流(邻接阵形式).txt | ||
acm_code/GG_rr_sg/图论_网络流/最大流无流量(邻接阵形式).txt | ||
acm_code/GG_rr_sg/图论_网络流/最小费用最大流(邻接阵形式).txt | ||
acm_code/GG_rr_sg/图论_网络流 | ||
acm_code/GG_rr_sg/图论_最短路径/最短路径(单源bellman_ford邻接阵形式).txt | ||
acm_code/GG_rr_sg/图论_最短路径/最短路径(单源dijkstra+binary_heap正向表形式).txt | ||
acm_code/GG_rr_sg/图论_最短路径/最短路径(单源dijkstra+binary_heap邻接表形式).txt | ||
acm_code/GG_rr_sg/图论_最短路径/最短路径(单源dijkstra+mapped_heap正向表形式).txt | ||
acm_code/GG_rr_sg/图论_最短路径/最短路径(单源dijkstra+mapped_heap邻接表形式).txt | ||
acm_code/GG_rr_sg/图论_最短路径/最短路径(单源dijkstra_bfs正向表形式).txt | ||
acm_code/GG_rr_sg/图论_最短路径/最短路径(单源dijkstra_bfs邻接表形式).txt | ||
acm_code/GG_rr_sg/图论_最短路径/最短路径(单源dijkstra邻接阵形式).txt | ||
acm_code/GG_rr_sg/图论_最短路径/最短路径(多源floyd_warshall邻接阵形式).txt | ||
acm_code/GG_rr_sg/图论_最短路径 | ||
acm_code/GG_rr_sg/图论_支撑树/最小树形图(邻接阵形式).txt | ||
acm_code/GG_rr_sg/图论_支撑树/最小生成树(kruskal正向表形式).txt | ||
acm_code/GG_rr_sg/图论_支撑树/最小生成树(kruskal邻接表形式).txt | ||
acm_code/GG_rr_sg/图论_支撑树/最小生成树(prim+binary_heap正向表形式).txt | ||
acm_code/GG_rr_sg/图论_支撑树/最小生成树(prim+binary_heap邻接表形式).txt | ||
acm_code/GG_rr_sg/图论_支撑树/最小生成树(prim+mapped_heap正向表形式).txt | ||
acm_code/GG_rr_sg/图论_支撑树/最小生成树(prim+mapped_heap邻接表形式).txt | ||
acm_code/GG_rr_sg/图论_支撑树/最小生成树(prim邻接阵形式).txt | ||
acm_code/GG_rr_sg/图论_支撑树 | ||
acm_code/GG_rr_sg/图论_应用/前序表转化.txt | ||
acm_code/GG_rr_sg/图论_应用/拓扑排序(邻接阵形式).txt | ||
acm_code/GG_rr_sg/图论_应用/最佳边割集.txt | ||
acm_code/GG_rr_sg/图论_应用/最佳顶点割集.txt | ||
acm_code/GG_rr_sg/图论_应用/最小路径覆盖.txt | ||
acm_code/GG_rr_sg/图论_应用/最小边割集.txt | ||
acm_code/GG_rr_sg/图论_应用/最小顶点割集.txt | ||
acm_code/GG_rr_sg/图论_应用/树的优化算法.txt | ||
acm_code/GG_rr_sg/图论_应用/欧拉回路(邻接阵形式).txt | ||
acm_code/GG_rr_sg/图论_应用 | ||
acm_code/GG_rr_sg/图论_匹配/一般图匹配(正向表形式).txt | ||
acm_code/GG_rr_sg/图论_匹配/一般图匹配(邻接表形式).txt | ||
acm_code/GG_rr_sg/图论_匹配/一般图匹配(邻接表形式 | 邻接阵接口).txt | |
acm_code/GG_rr_sg/图论_匹配/一般图匹配(邻接阵形式).txt | ||
acm_code/GG_rr_sg/图论_匹配/二分图最佳匹配(kuhn_munkras邻接阵形式).txt | ||
acm_code/GG_rr_sg/图论_匹配/二分图最大匹配(hungary正向表形式).txt | ||
acm_code/GG_rr_sg/图论_匹配/二分图最大匹配(hungary邻接表形式).txt | ||
acm_code/GG_rr_sg/图论_匹配/二分图最大匹配(hungary邻接表形式 | 邻接阵接口).txt | |
acm_code/GG_rr_sg/图论_匹配/二分图最大匹配(hungary邻接阵形式).txt | ||
acm_code/GG_rr_sg/图论_匹配 | ||
acm_code/GG_rr_sg/图论_NP搜索/最大团(n小于64)(faster).txt | ||
acm_code/GG_rr_sg/图论_NP搜索/最大团.txt | ||
acm_code/GG_rr_sg/图论_NP搜索 | ||
acm_code/GG_rr_sg/几何/三维几何.txt | ||
acm_code/GG_rr_sg/几何/三角形.txt | ||
acm_code/GG_rr_sg/几何/几何公式.txt | ||
acm_code/GG_rr_sg/几何/凸包(graham).txt | ||
acm_code/GG_rr_sg/几何/圆.txt | ||
acm_code/GG_rr_sg/几何/多边形.txt | ||
acm_code/GG_rr_sg/几何/多边形切割.txt | ||
acm_code/GG_rr_sg/几何/整数函数.txt | ||
acm_code/GG_rr_sg/几何/注意.txt | ||
acm_code/GG_rr_sg/几何/浮点函数.txt | ||
acm_code/GG_rr_sg/几何/球面.txt | ||
acm_code/GG_rr_sg/几何/网格(pick).txt | ||
acm_code/GG_rr_sg/几何/面积.txt | ||
acm_code/GG_rr_sg/几何 | ||
acm_code/GG_rr_sg/其他/分数.txt | ||
acm_code/GG_rr_sg/其他/大数(整数类封装).txt | ||
acm_code/GG_rr_sg/其他/日期.txt | ||
acm_code/GG_rr_sg/其他/矩阵.txt | ||
acm_code/GG_rr_sg/其他/线性方程组(gauss).txt | ||
acm_code/GG_rr_sg/其他/线性相关.txt | ||
acm_code/GG_rr_sg/其他 | ||
acm_code/GG_rr_sg | ||
acm_code/ACM答案/Parencodings答案.doc | ||
acm_code/ACM答案/答案Yellow Code.doc | ||
acm_code/ACM答案/有答案Immediate Decodability.doc | ||
acm_code/ACM答案/Magic Bitst |
本网站为编程资源及源代码搜集、介绍的搜索网站,版权归原作者所有! 粤ICP备11031372号
1999-2046 搜珍网 All Rights Reserved.