文件名称:video-partical
-
所属分类:
- 标签属性:
- 上传时间:2012-11-16
-
文件大小:347.33kb
-
已下载:0次
-
提 供 者:
-
相关连接:无下载说明:别用迅雷下载,失败请重下,重下不扣分!
介绍说明--下载内容来自于网络,使用问题请自行百度
提出一种人体运动跟踪算法,从无关节标记的单目视频中获取人体运动1 利用一个带外观模板的人体关节
模型,通过学习得到的运动模型及基于外观模型的相似性计算,巧妙地利用粒子滤波的概率密度传播策略鲁棒地跟
踪普通单目视频中的人体运动1 当出现跟踪丢失时,能在后续序列中自动恢复正确跟踪,且能较好地处理遮挡和自
遮挡问题1 实验表明,该算法鲁棒性好,跟踪结果令人满意- In this paper , a novel approach is proposed for t racking markerless human motion in monocular
videos to capture the articulate motion data1 With an articulated human model const ructed , the new ap2
proach uses the probability density propagation of the particle filters through the learnt motion model and
likelihood computing with the appearance models to t rack the human motion1 The method is capable of auto2
matically recovering f rom t racking failures1 It can also process the occlusion and auto2occlusion problem cor2
rectly1 Experimental result s f rom real monocular videos show that the new approach is robust and the t rack2
ing result s are satisfactory1
模型,通过学习得到的运动模型及基于外观模型的相似性计算,巧妙地利用粒子滤波的概率密度传播策略鲁棒地跟
踪普通单目视频中的人体运动1 当出现跟踪丢失时,能在后续序列中自动恢复正确跟踪,且能较好地处理遮挡和自
遮挡问题1 实验表明,该算法鲁棒性好,跟踪结果令人满意- In this paper , a novel approach is proposed for t racking markerless human motion in monocular
videos to capture the articulate motion data1 With an articulated human model const ructed , the new ap2
proach uses the probability density propagation of the particle filters through the learnt motion model and
likelihood computing with the appearance models to t rack the human motion1 The method is capable of auto2
matically recovering f rom t racking failures1 It can also process the occlusion and auto2occlusion problem cor2
rectly1 Experimental result s f rom real monocular videos show that the new approach is robust and the t rack2
ing result s are satisfactory1
(系统自动生成,下载前可以参看下载内容)
下载文件列表
单目视频中无标记的人体运动跟踪-陈坚粒子滤波.pdf
本网站为编程资源及源代码搜集、介绍的搜索网站,版权归原作者所有! 粤ICP备11031372号
1999-2046 搜珍网 All Rights Reserved.