文件名称:ApplicationofFuzzyNeuralNetworktoDecouplingControl
-
所属分类:
- 标签属性:
- 上传时间:2012-11-16
-
文件大小:174.48kb
-
已下载:1次
-
提 供 者:
-
相关连接:无下载说明:别用迅雷下载,失败请重下,重下不扣分!
介绍说明--下载内容来自于网络,使用问题请自行百度
在工业生产过程中,针对纯迟延、时变、强耦合的多输入多输出现象,提出一种
基于模糊神经网络解耦和PID控制相结合,对系统进行解耦控制的方法。这种方法不需要建
立多变量对象精确的数学模型,通过对大迟延大惯性强耦合的循环流化床锅炉床温-主汽压力
对象进行仿真,其结果表明,解耦控制效果很好,具有良好的静态性、动态性及鲁棒性。
-In the industrial production process for a pure delay, time-varying, strong coupling phenomenon of multiple-input multiple-output is proposed based on fuzzy neural network PID control decoupling and combining the system decoupling control method. This method does not require the establishment of multi-variable mathematical model of the object accurately, through the strong coupling large delay and large inertia of the circulating fluidized bed boiler bed temperature- the main steam pressure simulation objects, and the results show that decoupling control works well, with good static, dynamic and robust.
基于模糊神经网络解耦和PID控制相结合,对系统进行解耦控制的方法。这种方法不需要建
立多变量对象精确的数学模型,通过对大迟延大惯性强耦合的循环流化床锅炉床温-主汽压力
对象进行仿真,其结果表明,解耦控制效果很好,具有良好的静态性、动态性及鲁棒性。
-In the industrial production process for a pure delay, time-varying, strong coupling phenomenon of multiple-input multiple-output is proposed based on fuzzy neural network PID control decoupling and combining the system decoupling control method. This method does not require the establishment of multi-variable mathematical model of the object accurately, through the strong coupling large delay and large inertia of the circulating fluidized bed boiler bed temperature- the main steam pressure simulation objects, and the results show that decoupling control works well, with good static, dynamic and robust.
(系统自动生成,下载前可以参看下载内容)
下载文件列表
模糊神经网络在解耦控制中的研究.caj
本网站为编程资源及源代码搜集、介绍的搜索网站,版权归原作者所有! 粤ICP备11031372号
1999-2046 搜珍网 All Rights Reserved.