搜索资源列表
69491719BayesClassier(1)
- 实现模式识别,实现最小欧式距离分类器的实现与形成-Achieve pattern recognition, achieve the minimum Euclidean distance classifier and the formation of implementation
SVM_FACE
- 基于支持向量机的人脸检测训练集增强算法实现。根据支持向量机(support vector machine,简称SVM)~ ,对基于边界的分类算"~(geometric approach)~ 言,类别边界附近的样本通常比其他样本包含有更多的分类信息.基于这一基本思路,以人脸检测问题为例.探讨了 对给定训练样本集进行边界增强的问题,并为此而提出了一种基于支持向量机和改进的非线性精简集算法 IRS(improved reduced set)的训练集边界样本增强算法,用以扩大-91l练集并改
shibie
- 基于奇异值分解的人脸识别方法 梁毅雄 龚卫国 潘英俊 李伟红 刘嘉敏 张红梅 提出了一种将傅里叶变换和奇异值分解相结合的人脸自动识别方法.首先对人脸图像进行傅里叶变换,得到其具有位移不变特性的振幅谱表征.其次,从所有训练图像样本的振幅谱表征中给定标准脸并对其进行奇异值分解,求出标准特征矩阵,再将人脸的振幅谱表征投影到标准特征矩阵后得到的投影系数作为该人脸的模式特征.然后,对经典的最近邻分类器算法进行了改进,并采用模式特征之间的欧式距离作为相似性度量,从而完成对未知人脸的识别.采用ORL
bayes
- 简单贝叶斯分类器,分别采用欧式距离和马氏距离实现三类分类-Simple Bayesian classifier
distanceKNN
- 可以分别设置度量距离的KNN分类器,有欧式和马氏距离。对模式识别十分重要的作用,有着较好的分类效果,可以帮助新手更好的理解KNN原理,对人脸识别有着很好的演示作用。-Distance can be set respectively KNN classifier, style and markov distance. For pattern recognition is an important role, has a good classification effect, can help be
Mahalanobis
- 马氏距离是一种有效地计算两个样本集之间相似度的算法(数据之间协方差距离),与欧式距离相比,它考虑了各种特征之间的联系。本实验旨在通过给出的样本数据,设计一个最小马氏距离分类器并对测试点进行分类,然后将其与最小欧式距离分类器进行比较,实验得出当协方差矩阵为单位阵时,最小马氏距离分类器将与最小欧式距离分类器等价。-Markov distance is an effective method to compute the similarity between the two samples (data