搜索资源列表
recognition
- 本实验语音库为免费的柏林情感语音库,其采样频率为16KHZ,16bit量化。该语音库共有500 句情感语音信号,分别由十名专业演员(5 男,5 女)在不同情感状态下(高兴、愤怒、平静、悲伤、害怕、厌烦、憎恨)朗读十句不同文本的德语组成。本实验选取其中的部分情感(高兴、愤怒、悲伤)加以识别。仿真实验环境为MATLAB7.0。 实验选取的情感特征为短时平均能量、短时平均幅度、基频和短时过零率。为了降低不同人在表达不同情感时的个人差异造成的影响,本文实验过程中将提取的情感特征进行归一化处理。归一化
yuyinshibie
- 基于特定人情感的语音识别,语音情感特征提取;语音情感分类器的设计,完成了一个特定人语音情感识别的初步系统。内容很丰富-In this article, we have accomplished a system for emotion recognition of speech by establishing a database of speech with certain emotion by certain people analyzing emotion features and de
NBclassfier
- 贝叶斯情感分类器,基于五倍交叉法来验证。程序可以直接运行,改程序是在基于已经分词的情况下实施的。-Bayesian classifier, emotion to verify five times based on the crossover. Program can be run directly, the program is based on the segmentation of the case.
speech-emotion-recognition
- 过特定人语音情感数据库的建立;语音情感特征提取;语音情感分类器的设计,完成了一个特定人语音情感识别的初步系统。对于单个特定人,可以识别平静、悲伤、愤怒、惊讶、高兴5种情感,除愤怒和高兴之间混淆程度相对较大之外,各类之间区分特性良好,平均分类正确率为93.7 。对于三个特定人组成的特定人群,可以识别平静、愤怒、悲伤3种情感,各类之间区分特性良好,平均分类正确率为94.4 。其中分类器采用混合高斯分布模型。-The system of speech emotion recognition
PJudgetopic
- 机器学习的方法短信情感分类,喜怒哀惧,43123条短信训练集-SMS emotion machine learning classification methods, joy, anger, sadness and fear, 43123 SMS training set
NLP
- 中文文本情感分类。上课的课程作业,本着服务大家的思想上传,包括实验代码,实验数据,实验ppt以及实验报告。非常详细-Chinese text sentiment classification. Course work in class, in the service of everyone' s thoughts upload, including experimental code, test data, test and lab reports ppt. Very detailed.
nlp
- 基于贝叶斯网络的网络评论情感分类,Java实现,内附评论数据包-Based on Bayesian Network Web reviews sentiment classification, Java implementation, the packet included a review
qg_classify
- RNN实现情感分类,深度学习方法-RNN achieve sentiment classification, depth of learning
PLA
- PLA算法是人工智能经典算法之一,实现了小数据集的情感分类。-PLA algorithm is one of the classic algorithms of artificial intelligence, the realization of the passion of the small data set classification algorithm of PLA is one of the classic algorithms of artificial intelligence
image-sentiment-analysis
- 图片情感分析模型,基于卷积神经网络,以颜色特征为依据进行情感分类,图片情感极性分为积极和消极两类。(The model can extract the hue, brightness, contrast and other information from a picture to represent the emotional polarity of the image. The image sentiment analysis model is using convolution neura
NavieBayes github java
- java 朴素贝叶斯 机器学习 情感分类器(java naivebayes machinelearing)
Python中的数据挖掘(情感标记句)
- 这些代码实例创建了一个有效的、可执行的原型系统:一个使用“0”(负面情绪)或“1”(正面情绪)对产品的评论("评论的情感分类"的英文)进行分类的app。(These code instances create an effective and executable prototype system: a app that uses "0" (negative emotion) or "1" (positive mood) to comm
zh_lstm
- lstm做情感分类,中文,用到豆瓣影评,结巴分词,lstm模型,环境python3做编码处理。(lstm for sentiment analyse)
LSTM做文本情感分类
- PYTHON 爬虫 LSTM做文本情感分类源码,简单分析摆渡情感新闻.
fish_base-master
- 实现文本情感分类的python程序,可以判断一段文字是中性,消极或者是积极的(it can be used for classfying the feelings of text)
情感分析
- 分类,用于对情感词的统计、排序、分类等 包括源程序、数据拆分程序、训练集和测试集(Classification for statistics, sorting and classification of emotional words Includes source programs, data split programs, training sets, and test sets)
SVM
- 语音情感识别分类,在中科大录制的语音情感数据库CASIA中来实现的(Speech emotion recognition and classification is implemented in CASIA, a speech emotion database recorded by China University of science and technology.)
keras-SRU-master
- 利用sru进行文本情感分析,三分类,速度快,准确率高,利用keras环境,实用性大。(Using SRU for text sentiment analysis, three categories, fast speed, high accuracy, using keras environment, practical.)
语音识别
- 实现情感分类的语音识别,GUI界面已实现,可直接运行
online_shopping_10_cats
- 中文情感分类数据集。10 个类别(书籍、平板、手机、水果、洗发水、热水器、蒙牛、衣服、计算机、酒店),共 6 万多条评论数据,正、负向评论各约 3 万条。(There are 10 categories (book, tablet, mobile phone, fruit, shampoo, water heater, Mengniu, clothes, computer, hotel) in Chinese emotion classification corpus, with more th