搜索资源列表
jsff1
- 计算方法的4个小程序,牛顿插值,lagrange插值,牛顿迭代,改进欧拉公式
Enter_matrices_examples
- 此代码是用在被成为数学魔法师的MAPLE软件上运行的。此代码清晰的描述了欧拉公式的图象变换。以及如何在MAPLE里解欧拉公式。
matlabarray
- 这是一些matlab函数:欧拉公式一、格斯比函数等等 它是一些已知的m文件 可以方便的导入-this is matlab function euler1 and gossibi it s a .m file and can be join in easily
myeuler_vs_ode45
- 比较欧拉公式与matlab的ode方法解微分方程的不同-Comparison of the Euler formula for the ode with matlab different method to solve differential equations
ImprovedEulerformula
- 改进的欧拉公式的C语言实现 改进的欧拉公式的C语言实现-Improved Euler formula
Eulerformula
- 欧拉公式的C语言实现 -Euler formula
gongshi
- 这是用C写的计算方法中常用的公式,有梯形公式、变步长梯形公式、Romberg公式、欧拉公式、牛顿插值公式、lagrange插值公式等-It is written using C commonly used in the calculation of the formula, there is trapezoid formula, variable-step trapezoidal rule, Romberg formula, Euler' s formula, Newton' s i
weifenfangcheng
- 求解微分方程,这个压缩包里包括了:1. 欧拉公式2. 休恩公式3.四阶龙格-库塔公式三种方法-matlab
Discrete
- 用离散相似法对弹性阻尼系统进行仿真与隐性欧拉公式进行比较-Similar method using discrete simulation of the elastic damping system compared with the implicit Euler formula
Volterra
- 使用“改进的欧拉公式”和“4阶龙格-库塔公式”分别对Volterra方程求解,绘制解曲线、相轨线,并将结果进行比较。-Using the " improved Euler formula" and " 4-order Runge- Kutta formulas," respectively, Volterra equations, draw solution curves, phase trajectories, and the results were co
Analysis-of-RC-RL
- 用数值计算方法分析RC、RL串联电路暂态过程及数值计算方法在其他复杂电路分析中的应用举例。主要是用辛普生法则求积分的方法来求得流经R的电量,用隐性欧拉公式求一阶微分方程的方法来求得电压随时间的变化规律。系统的研究了RC电路和RL电路的暂态过程。 -Analysis of numerical methods with RC, RL series circuit transient process and numerical methods in analysis of other comple
mathexp4m
- 第五章 常微分数值解 改进欧拉公式求微分方程数值解的程序 预备实验-Of ordinary differential equations numerical solution
Code-of-differential-equations-
- 微分方程数值解的几种解方程方法代码 1.欧拉公式 2.解高阶方程 3.古典显式插查分格式 4.C-N格式 5.五点插分格式-Code of differential equations of several equations Euler formula for solving higher order equations to classical explicit insert check points format 4.CN format. 5-drop format
QGBCS_E_PI_calculation
- 用易语言实现的 基于欧拉公式的 计算圆周率小程序-Easy to use language based applet Euler formula calculating pi
Euler
- 通过欧拉操作来实现扫成的小程序,而且算法的思想很简单,只是需要用到实体建模中的名为翼边数据结构(又叫,半边数据结构)的东西,和一个欧拉公式。想学习实体建模的同学能够通过这个程序学到很多东西,对于那些想要交图形学课程的代码作业的同学来说,你也可以直接把这个交上去了吆,因为这个代码我已经测试过了,没有任何问题,可以直接运行。当然,最好你是为了学习需要,而不是为了直接down下来应付老师,而且前提是你要部署好OpenGl的库。-By Euler operations to achieve sweepi
新建文本文档.tar
- 欧拉(Euler)方法的MATLAB程序,包括向前欧拉方法的三种MATLAB程序,以及向后欧拉(Euler)方法的MATLAB程序(MATLAB program of Euler method)
Demo
- 欧拉角转换四元数 公式是从网上搜索的,代码自己编写的,适用任意支持C的平台,原本是为了6轴融合模拟9轴效果用的。(Euler angle conversion four yuan formula is from the Internet search, the code itself written, apply to any support C platform, originally for the 6 axis fusion simulation 9 axis effect.)
改进欧拉法-二分法-复化辛卜生公式
- 实现c语言的改进欧拉法,源文件没有任何修改(To achieve the improved Euler method in C language)
tools
- 自行编写的欧拉龙格库塔代码实现,龙哥库塔采用四阶(Runge Kutta and Euler Matlab)
欧拉
- 欧拉方法解常微分,公式正确,带入后可以直接运行