搜索资源列表
AdaboostHumanDetection
- Adaboost算法的行人检测,这是一篇硕士学位论文-Adaboost algorithm of pedestrian detection, which is a master' s degree thesis
Adaboost-for-face-detection
- 使用Adaboost算法实现人脸检测的论文集合,有四篇优秀硕士论文和一篇文献-Use of Adaboost face detection algorithm is a collection of papers, there are four excellent papers and a Master of Literature
Pattern_Recognition
- 自己在硕士期间用到的各种模式识别,机器学习,数据挖掘算法的matlab程序。C4_5,NN,SVM,adaboost,KNN等-During their Master used a variety of pattern recognition, machine learning, data mining algorithm matlab program. C4_5, NN, SVM, adaboost, KNN, etc.
FaceDect-master
- 基于增强Adaboost分类器人脸检测,效果很不错!值得借鉴!-Enhanced Adaboost classifier based on face detection, the effect is very good! Worth learning!
Adaboost-FaceDetection-master
- 用于人脸检测的haar+adaboost matlab的代码-For face detection haar+adaboost matlab code
adaboost-py-master
- 这是基于python 编写的 adaboost源码 和说明,直接调用即可。(This package implements a framework of adaboost, the famous Machine Learning algorithm. It is widely used in face related issues such as Face Recognition.)
AdaBoost-master
- adaboost code 人工智能神经网络深度学习‘’(adaboost code ai deeplearning)
NaiveBayesSpamFilter-master
- 利用朴素贝叶斯算法实现垃圾邮件的过滤,并结合Adaboost改进该算法(spam filter using Adaboost and Navie bayesian)
adaboost-viola-jones-master
- adaboost viola jones
classical-machine-learning-algorithm-master
- bayesian, k-means, knn, SVM, The Apriori algorithm, expectation-maximization(EM), C4.5, page rank, AdaBoost, CART
MLInActionCode-master
- 机器学习实战的源代码集合,第一部分主要介绍机器学习基础,以及如何利用算法进行分类,并逐步介绍了多种经典的监督学习算法,如k近邻算法、朴素贝叶斯算法、Logistic回归算法、支持向量机、AdaBoost集成方法、基于树的回归算法和分类回归树(CART)算法等。第三部分则重点介绍无监督学习及其一些主要算法:k均值聚类算法、Apriori算法、FP-Growth算法。第四部分介绍了机器学习算法的一些附属工具(Machine learning combat source code collection
RandomForest_AdaBoost-master
- 随机森林、Adaboost算法实例+java代码(RandomForest and AdaBoost-master algorithm instance +java code)
machine_learning_python-master
- 通过阅读网上的资料代码,进行自我加工,努力实现常用的机器学习算法。感知机的基本形式和对偶形式的实现 Kmeans和Kmeans++的实现 EM GMM高斯混合和GMM+LASSO的实现 实现朴素贝叶斯的基本算法和高斯混合朴素贝叶斯算法 实现决策树的基本算法 实现adaboost基本算法 实现svm基本算法 实现逻辑回归基本算法(By reading the data codes on the Internet, we can process oursel