搜索资源列表
woa
- 一个自己做的公司网站和办公职员管理系统。
WOA
- 鲸鱼群算法,新型算法,matlb程序,可以测试,里面还包含很多最近出现的新型算法-Whales algorithm, the new algorithm, matlb program, you can test, which also includes many new algorithms recent
WOA
- WOA for basic-1 in order to do optimization
WOA_Toolbox
- 非常好的智能优化算法,最近几年研究出来的,比较新,而且优化性能很好(a very good, novel artificial intelligence optimization algorithm, named whale optimization algorithm (WOA))
makeWoaData
- woa数据插值已获得自己想要的数据深度,与实际观测的深度数据比较(The data interpolation has obtained the depth of the data you want, compared with the actual observed depth data)
WOA
- 该优化算法是2016年提出的,是目前比较好的参数优化方法,这里是将其封装成一个工具的形式,方便用户的使用。(The optimization algorithm was put forward in 2016. It is a good parameter optimization method. It is encapsulated as a tool form, which is convenient for users.)
Whale Optimization Algorithm (WOA)
- Whale Optimization Algorithm (WOA)
WOACode
- The Whale Optimization Algorithm
WOA
- 鲸鱼群算法matlab 已经写成工具箱 更改相关函数后就可以使用(The whale group algorithm Matlab has been written as a toolbox)
PSO-vs-WOA-master
- 粒子群算法与鲸鱼优化算法比较源程序,提供参考文献,测试通过。(Whale Optimization Algorithm (WOA) source codes demo 1.0)
WOAlssvm
- 鲸鱼算法改进优化,结合最小二乘支持向量机,(Whale algorithm optimization)
改进3
- 改进WOA算法,可以解决大规模性的路径优化问题(Algorithms to solve large-scale path optimization problems)
鲸鱼优化算法
- 鲸鱼优化算法(WOA)是一种用于解决优化问题的新优化技术。该算法包括三个算子,用于模拟猎捕鲸鱼的猎物,环绕猎物和泡泡网觅食行为。 压缩包具体包括该算法的发表论文、源代码、matlab工具箱。(Whale optimization algorithm (WOA) is a new optimization technology for solving optimization problems. The algorithm consists of three operators, which a
PSO-vs-WOA-master
- 该代码用于PSO与WOA的优化性能比较,有绘图,输出等展示(This code is used to compare the optimization performance of PSO and WOA. It is shown in drawing, output and so on.)
WOA灰狼算法
- 灰狼优化算法,直接就能用,里面包含有23种测试函数,做实际应用时,需要调一下。(Gray wolf optimization algorithm, which can be used directly, contains 23 kinds of test functions, and needs to be adjusted in practical application.)
鲸鱼群智能优化神经网络(WOA-NN)
- 利用鲸鱼群智能优化算法实现对神经网络的优化,实验结果能够有效避免传统神经网络过拟合的问题,有效提高模型识别精度。内容包含:woa主函数,woa-nn优化主函数;以及三个分类原始数据可供优化模型验证。
鲸鱼优化算法(WOA)源代码
- 鲸鱼优化算法WOA于2016年被提出,算法拥有参数少、全局搜索能力强等优点。