搜索资源列表
darknet
- 神经网络引入后,检测框架变得更快更准确。然而,大多数检测方法受限于少量物体。检测和训练数据上联合训练物体检测器,用有标签的检测图像来学习精确定位,同时用分类图像来增加词汇和鲁棒性。原YOLO系统上生成YOLOv2检测器;在ImageNet中超过9000类的数据和COCO的检测数据上,合并数据集和联合训练YOLO9-After the neural network is introduced, it is becoming faster and more accurate detection fr
YOLO-master
- yolo算法的caffe实现,在darknet框架下,基于UNIX平台(Yolo algorithm Caffe implementation, in the Darknet framework, based on the UNIX platform)
darknet-master
- 是一种神经网络框架,在其基础上可以实现物体检测,图像分类,模式识别功能。(Darknet is a neural network framework written in C and CUDA. It is fast, easy to install, and supports CPU and GPU computation. You can find the source on GitHub or you can read more about what Darknet can do righ
darknet-master_20170303.tar
- 帅选出人体,yolo人员检测,yolo模型,并识别(peole detect and get the pix point of it ,)
darknet-master
- 经典的darknet框架,可以直接进行图片识别,也可以自己训练模型(Classic Darknet framework, you can directly picture recognition, you can also train your own model)
brutus-aet2-darknet
- password crack via brute force
darknet-master
- yolov3的c语言Windows版,可以用来训练自己的数据做目标检测.(yolov3 on windows, you can detect object by training your own data using this code)
darknet-master
- 包含YOLO,YOLOv2,YOLOv3,VGG,Resnet,imagenet等多个深度学习模型。(It includes several deep learning models such as YOLO, YOLOv2, YOLOv3, VGG, Resnet, Imagenet and so on.)
yolo V3
- 这个版本作者已经编译过了 可以在WIN系统上运行 YOLO3主要的改进有:调整了网络结构;利用多尺度特征进行对象检测;对象分类用Logistic取代了softmax。 在基本的图像特征提取方面,YOLO3采用了称之为Darknet-53的网络结构(含有53个卷积层),它借鉴了残差网络residual network的做法,在一些层之间设置了快捷链路(shortcut connections)。