搜索资源列表
events
- * acousticfeatures.m: Matlab scr ipt to generate training and testing files from event timeseries. * afm_mlpatterngen.m: Matlab scr ipt to extract feature information from acoustic event timeseries. * extractevents.m: Matlab scr ipt to extract ev
faceRecognitionBasedOnWavelet
- 基于小波变换和神经网络的人脸识别:本论文围绕人脸识别问题对人脸特征提取及识别技术进行了研究。主要有:对人脸识别的研究工作进行了综述;在KL算法的基础上提出了新的基于KL的特征提取方法,克服了KL算法计算量大,计算时间长的缺点,-Based on Wavelet Transform and Neural Network Face Recognition: In this paper, issues surrounding the face recognition feature extractio
flann-1.2-src
- 快速近似KNN库,是一个对于kd-tree的实现。可以用它实现特征向量的匹配。-Fast approximate KNN library, is one for the kd-tree implementation. You can use it to achieve the feature vector matching.
face
- 人脸识别程序,采用的是knn分类器,基于类内类间距离准则,特征提取。-Face recognition process, using the knn classifier, based on within-class inter-class distance criteria, feature extraction.
SVM
- In this paper, we show how support vector machine (SVM) can be employed as a powerful tool for $k$-nearest neighbor (kNN) classifier. A novel multi-class dimensionality reduction approach, Discriminant Analysis via Support Vectors (SVDA), is in
pca_knn
- 本方法采用pca进行特征提取,knn分类器进行人脸识别。-The method of feature extraction using pca, knn classifier for face recognition.
LDA_KNN
- 对随机选择的iris数据,用LDA进行特征提取,然后用K近邻分类器分类的完整程序-Feature extraction using LDA,and perform classification via KNN
svm
- 本程序包括:论文SVM 用于基于块划分特征提取的图像分类,和相应的matlab实现其中图像划分以及特征提取、聚类均利用matlab6.5完成。 -The procedures include: paper by SVM for feature extraction based on block classification, and the corresponding realization of one image into matlab, and feature extraction,
gaborsvm1
- 先用gabor 小波滤波器,做特征提取,然后用支持向量机(SVM)做分类,来实现人脸检测.需要用matlab 2010 或更新的版本才能运行-the code is used for face detection.Firstly it use gabor wavelet filter for feature extraction,Secondly it use support vector machine (SVM)for classification.matlab 2010 required.
KNN-ALG
- 基于欧式距离的最邻近改进算法,该算法在提高SIFT算法的特征点匹配效率-Euclidean distance based on the nearest improved algorithm SIFT algorithm to improve the efficiency of matching feature points
knn
- In pattern recognition, the k-nearest neighbor algorithm (k-NN) is a method for classifying objects based on closest training examples in the feature space.
KNN
- This simple KNN algorithm implementation for Feature selection, written in C-This is simple KNN algorithm implementation for Feature selection, written in C++
KNN
- 机器学习K近邻分类算法,使用的是C++编程。如果一个样本在特征空间中的k个最相似(即特征空间中最邻近)的样本中的大多数属于某一个类别,则该样本也属于这个类别。-K-nearest neighbor classification machine learning algorithm, using the C++ programming. If a sample in feature space is k most similar (i.e., the feature space adjacent
kNN
- matlab code to detect and identify the object feature for analysing and compraing purpose
KNN
- 邻近算法,或者说K最近邻(kNN,k-NearestNeighbor)分类算法是数据挖掘分类技术中最简单的方法之一。所谓K最近邻,就是k个最近的邻居的意思,说的是每个样本都可以用它最接近的k个邻居来代表。 kNN算法的核心思想是如果一个样本在特征空间中的k个最相邻的样本中的大多数属于某一个类别,则该样本也属于这个类别,并具有这个类别上样本的特性。该方法在确定分类决策上只依据最邻近的一个或者几个样本的类别来决定待分样本所属的类别。 kNN方法在类别决策时,只与极少量的相邻样本有关。由于kNN方
KNN
- kNN算法(k临近算法)的核心思想是如果一个样本在特征空间中的k个最相邻的样本中的大多数属于某一个类别,则该样本也属于这个类别,并具有这个类别上样本的特性。-The core idea of kNN algorithm is that if a sample in the feature space of k-nearest neighbor samples Most belong to a category, then the sample also fall into this catego
knn所涉及
- KNN是通过测量不同特征值之间的距离进行分类。它的的思路是:如果一个样本在特征空间中的k个最相似(即特征空间中最邻近)的样本中的大多数属于某一个类别,则该样本也属于这个类别。K通常是不大于20的整数。KNN算法中,所选择的邻居都是已经正确分类的对象。该方法在定类决策上只依据最邻近的一个或者几个样本的类别来决定待分样本所属的类别。(NN is classified by measuring the distance between the different eigenvalues. It is
knnimplementation
- 自己编写的KNN算法,不用工具包就可实现。kNN算法的核心思想是如果一个样本在特征空间中的k个最相邻的样本中的大多数属于某一个类别,则该样本也属于这个类别,并具有这个类别上样本的特性.(The core idea of the kNN algorithm is that if the majority of the k most neighboring samples of a sample in the feature space belong to a particular category
kNN
- K最近邻(k-Nearest Neighbor,KNN)分类算法,是一个理论上比较成熟的方法,也是最简单的机器学习算法之一。该方法的思路是:在特征空间中,如果一个样本附近的k个最近(即特征空间中最邻近)样本的大多数属于某一个类别,则该样本也属于这个类别。(K-nearest neighbor (KNN) classification algorithm is a relatively mature method in theory and one of the simplest machine
PCA+mnist
- 基于python,利用主成分分析(PCA)和K近邻算法(KNN)在MNIST手写数据集上进行了分类。 经过PCA降维,最终的KNN在100维的特征空间实现了超过97%的分类精度。(Based on python, it uses principal component analysis (PCA) and K nearest neighbor algorithm (KNN) to classify on the MNIST handwritten data set. After PCA dime