搜索资源列表
panduan
- 判断微分方程是否为病态方程,分别用定步长、变步长和适合病态系统的数值积分方法对系统求解,并与解析解进行对比,分析每种方法的求解精度和速度。-To determine whether the pathological differential equations, were used to set step, variable step size and suitable for pathological system numerical method for solving the system
MatlabOED3
- 掌握用Matlab软件求解微分方程模型的解析解和数值解的方法-Master the use of Matlab software for solving differential equations model of analytical solution and numerical solution methods
TheAnalyticalSolutionofTPBVP
- 在最优控制、变分法、微分方程等学科中常遇到两点边值问题( TPBVP ),徒手求取解析 解比较繁;MATLAB 的符号数学工具箱却又仅限于解一点边值问题。本示例阐述如何用符 号数学工具箱解 TPBVP。-In optimal control,variational calculus and differential equation frequently encountered two-point boundary value problems(TPBVP).Free-hand to g
wffc
- 微分方程的解析算法与工具,对解微分方程有帮助-MATLAB and Electronics Engineering, CD-ROM with source code
genHyper
- 合流超几何函数。 特型偏微分方程的解析解。 应用于热力学和电磁学-Confluent Hypergeometric function
DDE-with-matlab-program-
- 时滞微分方程解析解的matlab实现,其中一个m文件,定义方程以及时滞个数-Analytical Solution of Delay Differential Equations Matlab realization of one of the m file, define the equation as well as time delay number
83746585matllab
- matlab求解二阶全微分方程解析解的程序-the programming of resolving the Second order full differential equation by matlab
Matlab
- 用Matlab软件求解微分方程 的解析解和数值解-Analytical solutions and numerical solutions of differential equations solved using Matlab software
matlab
- 完成一个图形界面程序,试求解二阶微分方程y (t)= -3 cos(2t) +2sin(t)+t-3.8的数值解,并将数值解和解析画在同一图形窗口中进行比较,对图形进行标识,能够在界面输入初值和时间范围。-Completed a graphical interface program, try to solve the differential equation of second order y (t) =- 3 cos (t) 2+ 2 sin (t)+ t- 3.8 numerical
jfchs
- 可求解一微分方程,在得到解析解的同时用matlab画出方程图像。(A differential equation can be solved and the image can be obtained.)
微分方程解析解
- 用matlab求微分方程解析解的小示例,可以求解微分方程 附教程。(A small example of solving analytical solutions of differential equations by Matlab can be used to solve a tutorial for differential equations.)
FractionalHeatConductionToolbox
- 分数阶热传导工具箱可以用于求解分数阶微分方程中的热传导过程的求解,包含解析解与数值解的求解方式,含有显式,隐式和Crank–Nicolson求解方法。(The methods of solving models of heat conduction are described, namely analytical and numerical methods. In the case of numerical methods regards the finite difference method